

REJ10J0820-0200

C Compiler for M16C Family

Rev.2.00
Jun. 16, 2005

Application Notes

M3T-NC308WA/M3T-NC30WA

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them.
Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor
for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various
means, including the Renesas Technology Corp. Semiconductor home page (http://
www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a
total system before making a final decision on the applicability of the information and
products. Renesas Technology Corp. assumes no responsibility for any damage, liability or
other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp.
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace,
nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they
must be exported under a license from the Japanese government and cannot be imported
into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or
the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the
products contained therein.

Notes regarding these materials

1

Preface

These application notes explain methods for the efficient creation of application programs
which capitalize on the function and performance of the Renesas Technology M16C family
using the NC308WA V.5.20 Release 02 and NC30WA V.5.30 Release 02.

For Detailed specifications of the C compiler please refer to the NC308 User’s Manual and
NC30 User’s Manual.

Related Manuals

 Renesas Technology M16C Family Hardware Manuals
 High-performance Embedded Workshop User’s Manual
 NC308 User’s Manual
 NC30 User’s Manual
 M16C/80 & M32C/80 Series Programming Guidelines <C Language>

Symbols and Conventions used in this Application Note
[]: Indicates that the enclosed item can be omitted.

(RET): Indicates the Return (Enter) key is to be pressed.

Δ: Indicates one or more spaces or tabs.

abc: Boldfaced items are to be input by the user.

<>: Items enclosed in these brackets should be specified.

… : Indicates that the immediately preceding item is specified one or more times.

H: Integer constants followed by H are in hexadecimal.

0x: Integer constants preceded by 0x are in hexadecimal.

0b: Integer constants preceded by 0b are in binarydecimal.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company limited.

MS-DOS® is a registered trademark of Microsoft Corporation in the United States and other countries.

Microsoft® WindowsNT® operating system, Microsoft®,Windows®98 and Windows 2000 operating
system, Microsoft® WindowsMe® operating system, Microsoft® WindowsXP® operating system are
registered trademarks of Microsoft Corporation in the United States and other countries.

IBM PC is a registered trademark of International Business Machines Corporation.

Linux is a trademark of Linus Torvalds.

Turbolinux and its logo are trademarks of Turbolinux, Inc.

Solaris is a registered trademark of Sun Microsystems, Inc.

It is recommended that these application notes be read in the following manner.

Contents
SECTION 1.OVERVIEW ... 1-1

1.1SUMMARY... 1-1
1.1.1SPECIFICATION SUMMARY... 1-1

1.2FEATURES .. 1-2
1.3METHOD OF INSTALLATION .. 1-3
1.4METHOD OF EXECUTION.. 1-4

1.4.1STARTING THE COMPILER.. 1-4
1.4.2STARTING THE EMBEDDED WORKSHOP ... 1-5

1.5PROCEDURE FOR PROGRAM DEVELOPMENT .. 1-6

SECTION 2.PROCEDURE FOR CREATING A PROGRAM..................................... 2-1

2.1CREATING A PROJECT... 2-1
2.2START-UP PROGRAMS.. 2-10

2.2.1PURPOSE OF STARTUP PROGRAMS... 2-10
2.2.2SETTING UP A STARTUP PROGRAM .. 2-12

SECTION 3.COMPILER.. 3-1

3.1INTERRUPT FUNCTIONS... 3-1
3.1.1CODING INTERRUPT PROCESSING FUNCTIONS... 3-1
3.1.2CODING FAST INTERRUPT PROCESSING FUNCTIONS.. 3-4
3.1.3CODING FUNCTIONS FOR SOFTWARE INTERRUPT (INT INSTRUCTION)

PROCESSING ... 3-6
3.1.4RETISTERING INTERRUPT PROCESSING FUNCTIONS .. 3-8
3.1.5CODING EXAMPLE OF INTERRUPT PROCESSING FUNCTIONS............................ 3-9

3.2ASSEMBLER MACRO... 3-11
3.2.1................ ASSEMBLY LANGUAGE INSTRUCTIONS THAT CAN BE SPECIFIED USING

ASSEMBLER MACRO FUNCTIONS... 3-11
3.2.2DECIMAL ADDITION USING THE ASSEMBLER MACRO FUNCTION "DADD_B"... 3-14
3.2.3TRANSFERRING STRINGS USING THE ASSEMBLER MACRO FUNCTION "SMOVF_B"

... 3-15
3.2.4SUM-OF-PRODUCTS OPERATION USING THE ASSEMBLER MACRO FUNCTION

"RMPA_W" ... 3-16
3.2.5#PRAGMA __ASMMACRO... 3-17

3.3PRAGMA FUNCTIONS AND OPTIONS FOR REDUCING ROM AREA....... 3-18
3.3.1#PRAGMA SBDATA ... 3-18
3.3.2#PRAGMA SB16DATA ... 3-19
3.3.3#PRAGMA BIT.. 3-20
3.3.4#PRAGMA SPECIAL.. 3-21
3.3.5–FJSRW.. 3-22
3.3.6–OR .. 3-23
3.3.7–FNO_ALIGN .. 3-24
3.3.8–WNO_USED_FUNCTION.. 3-25

3.4PRAGMA FUNCTION AND OPTIONS FOR SPEEDING UP PROCESSING 3-26
3.4.1#PRAGMA STRUCT ... 3-27
3.4.2-OSTACK_FRAME_ALIGN .. 3-31

3.4.3-OS.. 3-32
3.4.4-OLOOP_UNROLL[=COUNT].. 3-33
3.4.5-OFLOAT_TO_INLINE ... 3-34
3.4.6–OSTATIC_TO_INLINE.. 3-35

3.5PRAGMA FUNCTIONS AND OPTIONS FOR REDUCING ROM AREA AND
SPEEDING UP PROCESSING .. 3-36

3.5.1-O[1-5] .. 3-37
3.5.2-OSP_ADJUST... 3-39
3.5.3-FUSE_DIV.. 3-40
3.5.4-WNO_USED_ARGUMENT ... 3-41
3.5.5-FSMALL_ARRAY .. 3-42
3.5.6-FDOUBLE_32 .. 3-43

3.6OTHER PRAGMA FUNCTIONS AND OPTIONS.. 3-44
3.6.1OTHER PRAGMA FUNCTIONS ... 3-44
3.6.2OTHER OPTIONS.. 3-48

3.7SECTIONS ... 3-52
3.7.1SECTIONS MANAGED BY NC308 .. 3-52

3.8ISSUES RELATED TO CROSS-SOFTWARE .. 3-55
3.8.1ISSUES RELATED TO ASSEMBLY LANGUAGE PROGRAMS 3-55

3.9LONG LONG TYPE... 3-63
3.10"NEAR/FAR" TYPE.. 3-64

3.10.1NEAR AND FAR AREAS... 3-64
3.10.2DEFAULTS OF THE "NEAR" AND "FAR" ATTRIBUTES 3-64
3.10.3"NEAR" AND "FAR" SPECIFICATION FOR FUNCTIONS 3-64
3.10.4"NEAR" AND "FAR" SPECIFICATION FOR VARIABLES 3-65
3.10.5"NEAR" AND "FAR" SPECIFICATION FOR POINTERS....................................... 3-67
3.10.6DIFFERENCE IN POINTER'S "NEAR/FAR" SPECIFICATION BETWEEN NC308 AND

NC30.. 3-69
3.10.7ASSIGNING VARIABLE ADDRESS IN THE FAR AREA TO THE "NEAR" POINTER 3-69

3.11INLINE EXPANSION.. 3-70
3.11.1OVERVIEW OF THE INLINE STORAGE CLASS... 3-70
3.11.2FORMAT OF AN INLINE STORAGE CLASS DECLARATION 3-70
3.11.3RULES FOR THE INLINE STORAGE CLASS... 3-72

SECTION 4.HIGH-PERFORMANCE EMBEDDED WORKSHOP 4-1

4.1SPECIFYING OPTIONS IN HIGH-PERFORMANCE EMBEDDED WORKSHOP 4-1
4.1.1C COMPILER OPTIONS... 4-2
4.1.2ASSEMBLER OPTIONS .. 4-13
4.1.3LINKAGE EDITOR OPTIONS.. 4-19
4.1.4LIBRARIAN OPTIONS.. 4-26
4.1.5LOAD MODULE CONVERTER OPTIONS ... 4-30
4.1.6CONFIGURATION OPTIONS... 4-34
4.1.7CPU OPTIONS... 4-37

4.2BUILDS .. 4-38
4.2.1MAKEFILE OUTPUT ... 4-38
4.2.2MAKEFILE INPUT .. 4-39
4.2.3CREATING CUSTOM PROJECT TYPES ... 4-41

4.2.4MULTI-CPU FEATURE .. 4-45
4.2.5NETWORKING FEATURE .. 4-46

SECTION 5.EFFICIENT PROGRAMMING TECHNIQUES.................................... 5-1

5.1REGISTER PASSING FOR ARGUMENTS.. 5-2
5.2USING REGISTER VARIABLES.. 5-3
5.3USING M16C-SPECIFIC INSTRUCTIONS... 5-5
5.4USING THE "CARRY" FLAG FOR BIT OPERATION BRANCHING 5-6
5.5MOVING DETERMINATE EXPRESSIONS WITHIN A LOOP TO OUTSIDE OF
THE LOOP .. 5-7
5.6 . SBDATA DECLARATION AND SPECIAL PAGE FUNCTION DECLARATION
UTILITY.. 5-8
5.7USING "SWITCH" INSTEAD OF "ELSE IF" ... 5-9
5.8COMPARISON OPERATORS FOR LOOP COUNTERS 5-10
5.9RESTRICT.. 5-10
5.10USING _BOOL... 5-11
5.11EXPLICITLY INITIALIZING AUTO VARIABLES.. 5-11
5.12INITIALIZING ARRAYS ... 5-12
5.13INCREMENTS / DECREMENTS.. 5-13
5.14"SWITCH" STATEMENTS .. 5-14
5.15IMMEDIATE FLOATING-POINTS .. 5-14
5.16ZERO CLEARING EXTERNAL VARIABLES.. 5-15
5.17ORGANIZING STARTUP.. 5-16
5.18USING TEMPORARY VALUES WITHIN LOOPS .. 5-18
5.19USING 32-BIT MATHEMATICAL FUNCTIONS .. 5-19
5.20USING UNSIGNED WHENEVER POSSIBLE .. 5-20
5.21ARRAY INDEX TYPES ... 5-21
5.22USING PROTOTYPE DECLARATIONS.. 5-21
5.23USING THE CHAR TYPE FOR FUNCTIONS THAT RETURN ONLY CHAR
TYPE VALUES ... 5-23
5.24COMMENTING OUT CLEAR PROCESSING FOR BSS AREAS 5-24
5.25REDUCING GENERATED CODE.. 5-25

SECTION 6.USING THE SIMULATOR DEBUGGER.. 6-1

6.1 USING THE VIRTUAL INTERRUPT FUNCTION ... 6-2
6.1.1 INSERTING A VIRTUAL INTERRUPT BY BUTTON CLICK 6-2
6.1.2 INSERTING A VIRTUAL INTERRUPT AT A REGULAR INTERVAL 6-4
6.1.3 INSERTING A VIRTUAL INTERRUPT AT A SPECIFIED CYCLE 6-6
6.1.4 INSERTING A VIRTUAL INTERRUPT WHEN AN INSTRUCTION AT A SPECIFIED

ADDRESS IS EXECUTED... 6-9
6.2 USING THE VIRTUAL PORT INPUT/OUTPUT FUNCTION.. 6-11

6.2.1 ENTERING DATA BY BUTTON CLICK ... 6-11
6.2.2 ENTERING DATA FROM A VIRTUAL PORT WHEN A SPECIFIED ADDRESS IS READ

... 6-13
6.2.3 ENTERING DATA FROM A VIRTUAL PORT AT A SPECIFIED CYCLE 6-17
6.2.4 ENTERING DATA FROM A VIRTUAL PORT WHEN A VIRTUAL INTERRUPT OCCURS

... 6-19

6.2.5 CHECKING DATA OUTPUT TO A VIRTUAL OUTPUT PORT 6-21
6.3 USING A VIRTUAL LED OR LABEL TO CHECK THE MEMORY CONTENTS.............. 6-26
6.4 USING PRINTF FOR DEBUGGING .. 6-29
6.5 USING I/O SCRIPTS ... 6-31

SECTION 7.MISRA C .. 7-1

7.1MISRA C... 7-1
7.1.1WHAT IS MISRA C?.. 7-1
7.1.2RULE EXAMPLES ... 7-1
7.1.3COMPLIANCE MATRIX.. 7-3
7.1.4RULE VIOLATIONS... 7-3
7.1.5MISRA C COMPLIANCE .. 7-3

7.2SQMLINT... 7-4
7.2.1WHAT IS SQMLINT? .. 7-4
7.2.2USING SQMLINT ... 7-6
7.2.3VIEWING TEST RESULTS.. 7-7
7.2.4DEVELOPMENT PROCEDURES .. 7-8
7.2.5SUPPORTED COMPILERS .. 7-8

SECTION 8.FREQUENTLY ASKED QUESTIONS.. 8-1

8.1C COMPILER (M3T-NC308WA) ... 8-1
8.1.1BIT FIELDS.. 8-1
8.1.2MEMORY MANAGEMENT FUNCTIONS... 8-2
8.1.3"-ONBSD2 OPTION... 8-3
8.1.4PRIORITY OF OPTIMIZATION OPTIONS.. 8-4
8.1.5ADDING FUNCTIONS TO THE LIBRARY ... 8-5
8.1.6PLACING CONST DECLARATIONS IN THE ROM SECTION 8-6
8.1.7PASSING PARAMETERS VIA REGISTERS .. 8-7
8.1.8HOW FUNCTION PARAMETERS ARE PASSED... 8-8
8.1.9PROTOTYPE DECLARATIONS .. 8-9
8.1.10MEMBER PLACEMENT IN A STRUCTURED BIT FIELD.................................... 8-10
8.1.11INCREMENT AND DECREMENT OPERATORS ... 8-12
8.1.12PLACING EXTERNAL VARIABLES.. 8-13
8.1.13PLACING AN ARRAY IN THE FAR AREA ... 8-14
8.1.14PLACING A FUNCTION AT A FIXED ADDRESS .. 8-15
8.1.15SPECIFYING AN ABSOLUTE ADDRESS USING #PRAGMA ADDRESS 8-16
8.1.16USING #DEFINE TO DEFINE A STRING.. 8-17
8.1.17TYPES OF BIT FIELD MEMBERS ... 8-18
8.1.18DUPLICATE VARIABLE DEFINITIONS.. 8-19
8.1.19PROTOTYPE DECLARATIONS FOR A FUNCTION ... 8-20
8.1.20EXTERNAL REFERENCES FOR FUNCTIONS WITHOUT AN EXTERN DECLARATION

... 8-21
8.1.21CODE DELETION DURING OPTIMIZATION .. 8-22
8.1.22CONSOLIDATING BIT ACCESS .. 8-23
8.1.23PLACING A LIBRARY FUNCTION AT A ROM ADDRESS 8-24
8.1.24PROCESSING FOR NEGATIVE INTEGER CALCULATIONS 8-25
8.1.25INT TYPE SIZES.. 8-26

8.1.26CONTROLLING THE ENTER INSTRUCTION... 8-28
8.1.27 PERFORMANCE FOR THE FLOATING-POINT LIBRARY 8-29

8.2LINKER.. 8-30
8.2.1"-LOC" OPTION FOR LN308 AND LN30... 8-30
8.2.2WARNINGS DURING LINKING .. 8-31
8.2.3CHANGING A START ADDRESS ... 8-32

8.3STK VIEWER... 8-33
8.3.1STK VIEWER STACK SIZE... 8-33

8.4SQMLINT... 8-34
8.4.1SELECTING TEST RULES.. 8-34
8.4.2OUTPUTTING REPORT FILES.. 8-35
8.4.3REPORT MESSAGES (1) .. 8-37
8.4.4REPORT MESSAGES (2) .. 8-38

8.5HIGH-PERFORMANCE EMBEDDED WORKSHOP ... 8-39
8.5.1LINK ORDER FOR FILES... 8-39
8.5.2LINK ORDER FOR RELOCATABLE FILES ... 8-41
8.5.3GENERATING MOTOROLA S FORMAT FILES ... 8-42
8.5.4INSTALLING HIGH-PERFORMANCE EMBEDDED WORKSHOP (1) 8-43
8.5.5INSTALLING HIGH-PERFORMANCE EMBEDDED WORKSHOP (2) 8-44
8.5.6CANCELLING A BUILD.. 8-45
8.5.7SELECTING A BUILD TARGET... 8-46
8.5.8BUILD CONFIGURATION... 8-47
8.5.9OUTPUTTING DEBUGGING INFORMATION .. 8-48

8.6SBDATA DECLARATION UTILITY... 8-49
8.6.1SBDATA DECLARATION UTILITY.. 8-49

APPENDIX...A-1

APPENDIX A.ADDED FEATURES...A-1
A.1FEATURES ADDED BETWEEN VER 1.00 RELEASE 1 AND VER 2.00 RELEASE 1 ...A-1
A.2 FEATURES ADDED BETWEEN VER 2.00 RELEASE 1 AND VER 2.00 RELEASE 2 ..A-3
A.3 FEATURES ADDED BETWEEN VER 2.00 RELEASE 2 AND VER 3.00 RELEASE 1 ..A-4
A.4 FEATURES ADDED BETWEEN VER 3.00 RELEASE 1 AND VER 3.10 RELEASE 1 ..A-7
A.5 FEATURES ADDED BETWEEN VER 3.10 RELEASE 1 AND VER 3.10 RELEASE 2 ..A-8
A.6 FEATURES ADDED BETWEEN VER 3.10 RELEASE 2 AND VER 3.10 RELEASE 3 ..A-9
A.7 FEATURES ADDED BETWEEN VER 3.10 RELEASE 3 AND VER 5.00 RELEASE 1 A-10
A.8 FEATURES ADDED BETWEEN VER 5.00 RELEASE 1 AND VER 5.10 RELEASE 1 A-12
A.9 FEATURES ADDED BETWEEN VER 5.10 RELEASE 1 AND VER 5.20 RELEASE 1 A-14

1-1

Section 1. Overview

1.1 Summary

The NC30WA and NC308WA compilers enable effective creation in the C language of programs that
take advantage of the functions and performance of the Renesas Technology M16C family of
single-chip microcomputers for embedded applications.

This document explains procedures for creating application programs using these C compilers.

1.1.1 Specification Summary

Language specification ANSI standard

INT type 16 bits

Supported data types 8, 16, 32, and 64 bit integer types

32 and 64 bit floating-point types

Features Multi-memory model

Japanese character support

High ROM efficiency

1-2

1.2 Features

The following table shows the features of the M16C family compilers NC30WA and NC308WA.

Performance Top-class ROM efficiency.

Memory model Memory can be specified in detail, using "near/far" specifications.

Extensibility Robust support for embedded functionality, such as interrupt function
and address declarations, using #pragma.

Regional characters The EUC character encoding is supported, allowing string constants
and comments to be specified in European and Asian languages.

Utilities ROM compression utilities are supported.

Tools included Integrated development environments (TM and High-performance
Embedded Workshop)

An assembler that supports structured code

A simulator

1-3

1.3 Method of Installation

PC Version

To perform installation, start the installer and follow the instructions displayed. Be sure to check the
license ID before starting installation, as it needs to be entered during installation.

The data entered during the installation process is used to create a user registration file (this file is only
created for the PC version).

1-4

1.4 Method of Execution

1.4.1 Starting the Compiler

• Command input format for compile drivers

A compile driver runs the compiler commands, assembler commands, and link commands, and creates
a machine language data file. The following information (input parameters) is needed to run a compile
driver:

1. C source file

2. Assembly source file

3. Relocatable object file

4. Command line options (items specified as necessary)

Enter these items on the command line. Enter at least one item among 1, 2, and 3. Figure 1.1 shows the
input format, and Figure 1.2 shows an input example. In the input example, the following operations
are performed, and the absolute module file "sample.x30" is created:

1. The startup program "ncrt0.a30" is assembled.

2. The C source program "sample.c" is compiled/assembled.

3. The relocatable object file "ncrt0.a30" is linked to "sample.r30".

The start options are as follows:

• Option for specifying the name of the absolute module file "sample.x30": "-o"

• Option for specifying the list file (*.lst) output during assembly: -as30 "-l"

• Option for specifying the map file (*.map) output during linking: -ln30 "-ms"

Figure 1.1 Input Format for Compile Drivers

Figure 1.2 Input Example for the Compile Driver Command

% nc30{Δ}[start-options]{Δ}<[name-of-assembly-language-source-file]{Δ}

[name-of-relocatable-object-file]{Δ}[name-of-C-source-file]>

%: Indicates the command prompt.

< >: Indicates required items.

[]: Indicates optional items.

Δ: Indicates a space.

% nc30 -osample -as30 "-l" -ln30 "-ms" ncrt0.a30 sample.c{return}

{return}: Indicates the Return key being entered.

Be sure to specify the start-up program first when linking.

1-5

1.4.2 Starting the Embedded Workshop

When installation is performed correctly, the Embedded Workshop is placed in a folder named
[Renesas High-performance Embedded Workshop], in the [Programs] folder of the Windows [Start]
menu, along with shortcuts to each executable program of the Embedded workshop. Note that the items
displayed in the [Start] menu differ depending on which tools are installed.

Figure 1.3 Starting the Embedded Workshop from the Start Menu

From the Start menu, when you click the Embedded Workshop, a start-up message is displayed,
followed by the [Welcome!] dialog box (as shown in Figure 1.4).

Figure 1.4 [Welcome!] Dialog Box

When using the Embedded Workshop for the first time, or creating a new project, select [Create a new
workspace], and then click the [OK] button. Otherwise, to work on a project already created, select
[Open a recent project workspace] or [Browse to another project workspace], and then click the [OK]
button. You can also click the [Administration…] button to add or remove the system tools used with
the Embedded Workshop.

1-6

1.5 Procedure for Program Development

Figure 1.5 shows an example flow for program development using NC308. The following is an
overview of this program (items 1 through 4 correspond to those in Figure 1.5).

(1) The C source program ("AA.c") is compiled by nc308 and assembled by assembler as308, and
the relocatable object file ("AA.r30") is created.

(2) The settings for section location, section size, and interrupt vector table are changed to match
systems in which the include file "sect308.inc" is embedded. This file contains code for startup
program "ncrt0.a30", as well as section information.

(3) The changed startup program is assembled, and as a result, the relocatable object file "ncrt0.r30"
is created.

(4) The two relocatable object files, "AA.r30" and "ncrt0.r30", are linked by linkage editor ln308,
which is executed from nc308. The absolute module file ("AA.x30") is then created.

Figure 1.5 Flow of Program Development

1-7

MEMO

2-1

Section 2. Procedure for Creating a Program

2.1 Creating a Project

(1) Specify the project

When you have selected the [Create a new project workspace] radio button and clicked [OK] on the
[Welcome!]" dialog box, the [New Project Workspace] dialog box (Figure 2.1), which is used to create
a new workspace and project, will be launched. You can specify a workspace name (when a new
workspace is created, the project name is the same as the default), a CPU family, a project type, and so
on, in this dialog box. For example, when you enter "tutorial", in the [Workspace Name] field, then the
[Project Name] field will show "tutorial" and the [Directory] field will show "C:¥Hew3¥tutorial". If
you want to change the project name, enter a new project name manually in the [Project Name] field. If
you want to change the directory used for the new workspace, click the [Browse…] button and specify
a directory, or enter a directory path manually in the [Directory] field.

Figure 2.1 New Project Workspace Dialog Box

2-2

(2) Selecting the target CPU

When you click [OK] on the [New Project Workspace] dialog box, the project generator will be
invoked. Start by selecting the CPU that you will be using. CPU types shown in the [CPU Type] list are
classified into the CPU series shown in the [CPU Series] list. The selected items in the [CPU Series:]
list box and the [CPU Type:] list box specify the files to be generated. Select the CPU type of the
program to be developed. If the CPU type which you want to select is not displayed in the [CPU Type:]
list, select a CPU type with similar hardware specifications or select [Other].

• Clicking [Next>] moves to the next display.

• Clicking [<Back] moves to the previous display or the previous dialog box.

• Clicking [Finish] opens the [Summary] dialog box.

• Clicking [Cancel] returns the display to the [New Project Workspace] dialog box.

[<Back], [Next>], [Finish], and [Cancel] are common buttons of all the wizard dialog boxes.

Figure 2.2 New Project Step 1 Dialog Box

2-3

(3) Selecting the RTOS

Clicking the [Next>] button on the Step-1 screen opens the dialog box shown in Figure 2.3. In this
window, you can select whether or not to use an RTOS, as well as whether to use the default startup file
or a user-defined file.

Figure 2.3 New Project Step 2 Dialog Box

2-4

(4) Setting the input/output library, and heap size

Clicking the [Next>] button on the Step-2 screen opens the dialog box shown in Figure 2.4. In this
window, you can select whether or not to use the I/O library, which whether or not to generate a "main"
function file, and the size of the heap area.

Figure 2.4 New Project Step 3 Dialog Box

2-5

(5) Setting the stack area

Clicking the [Next>] button on the Step-3 screen opens the dialog box shown in Figure 2.5. You can
use this window to set the stack size and interrupt stack size.

Figure 2.5 New Project Step 4 Dialog Box

2-6

(6) Setting the debugger options

When the [Next>] button is clicked in the Step-4 screen, the screen shown in figure 2.6 is displayed.
You can use this window to perform settings for external package debuggers. Use this window to
specify the debugger target, by selecting from [Targets:] the debugger target to be used. You may also
leave the debugger target unselected.

Note that you can also select a debugger for an external package, if any exist.

Figure 2.6 New Project Step 5 Dialog Box

2-7

(7) Setting the configuration file name

In the window for Step 5, click the [Next >] button to display the window shown in Figure 2.7.

In this window, set a configuration file name for each target selected.

A configuration refers to a file in which non-target High-performance Embedded Workshop statuses are
saved.

Figure 2.7 New Project Step 6 Dialog Box

2-8

(8)Confirming settings (Summary dialog box)

Clicking on [Next >] on the Step-6 screen displays the screen shown in Figure 2.8. This Window,
displays the source file information for the project to be created. After confirmation, click [Finish].

When you click [Finish] on the screen in Figure 2.8, the project generator shows a list of generated files
on the [Summary] dialog box (Figure 2.9). Confirm the contents of the dialog box and click [OK].

When [Generate Readme.txt as a summary file in the project directory] checkbox is selected, the
project information displayed on the [Summary] dialog box will be stored in the project directory under
the text file name "Readme.txt".

Figure 2.8 New Project Step 7 Dialog Box

2-9

Figure 2.9 Summary Dialog Box

2-10

2.2 Start-up Programs

2.2.1 Purpose of Startup Programs

For built-in programs to run correctly, before processing, the microcomputer must be initialized, and
the stack area must be set. Since such processing cannot usually be performed using C code, a program
separate from the C source program is used that performs initialization and settings via assembly code.
This is called a startup program. The following explains the sample startup programs "ncrt0.a30" and
"sect308.inc", as prepared by NC308.

Purposes of the startup programs:

① Securing the stack area

② Performing initial settings for the microcomputer

③ Initializing the static variable space

④ Setting up the interrupt table register INTB

⑤ Calling the main function

⑥ Setting up the interrupt vector table

2-11

Figure 2.10 The Structure of a Startup Program

sect308.inc

Setting the location of each section

Setting the section start address

Setting up the variable vector table

Setting up the fixed vector table

ncrt0.a30

Setting the size of the heap area

Setting the size of the stack area

Setting the head address of the
interrupt vector table

.include sect308.inc

Setting the SB area

Defining a macro to initialize the
variable area

Initializing the stack pointer

Setting the processor operation
mode

Initializing the FLG register

Initializing the FB and SB registers

Initializing the INTB register

Initializing the near area of the data

Initializing the far area of the data

Initializing the heap area

Initializing the standard input/output
function library

Calling the main function

2-12

2.2.2 Setting Up a Startup Program

(1) Adding a section name

The sections created by NC308 are defined in the section definition file "sect308.inc". When you
change a section name in "#pragma SECTION", the section base name created by NC308 is added. As
a result, you must add such definitions in the section definition file "sect308.inc".

Figure 2.11 Adding Section Names (sect308.inc)

;---

; Arrangement of section

;---

;---

; Near RAM data area

;---
; SBDATA area

.section data_SE,DATA

.org 400H

data_SE_top:

;

.section bss_SE,DATA

bss_SE_top:

...

.section data_NO,DATA

data_NO_top:

;

. section new_data_NE,DATA

new_data_NE_top:

;

 section new_bss_NE,DATA

new_bss_NE_top:

...

;---

; code area

;---

.section interrupt

;

.section program

;

.section new_program

...

Defining an additional section name
changed in "#pragma SECTION."

Defining an additional section name
changed in "#pragma SECTION."

Defining an additional section name
changed in "#pragma SECTION."

2-13

When adding a data section or bss section, in addition to adding a definition of the section name, you
need to include initial value transfer processing and zero clear processing for each area. So, be sure to
add these to "ncrt0.a30".

Figure 2.12 Adding Initialization Processing for the Added Sections

;==

; NEAR area initialize.

;--

; bss zero clear

;--

 BZERO bss_SE_top,bss_SE

 BZERO bss_SO_top,bss_SO

 BZERO bss_NE_top,bss_NE

 BZERO bss_NO_top,bss_NO"

 BZERO new_bss_NE_top,new_bss_NE

;---

; initialize data section

;---

 BCOPY data_SEI_top,data_SE_top,data_SE

 BCOPY data_SOI_top,data_SO_top,data_SO

 BCOPY data_NEI_top,data_NE_top,data_NE

 BCOPY data_NOI_top,data_NO_top,data_NO

 BCOPY new_data_NEI_top,new_data_NE_top,new_data_NE

;

Adding zero clear processing for the new
bss section.

Adding initial value transfer
processing for the new data
section.

2-14

(2) Registering interrupt functions

To use interrupts correctly, you need to specify an interrupt processing function, and register it in the
interrupt vector table. The following explains how to perform registration in the interrupt vector table.

To specify an interrupt processing function, perform registration by changing the interrupt vector table
in the sample startup program "sect308.inc".

Perform the following changes to the interrupt vector table:

① Use the ".glb" instruction command to make an external reference declaration for the interrupt
processing function.

② For the interrupt to be used, change the dummy function name dummy_int to the name of the
interrupt processing function.

Figure 2.13 Interrupt Vector Table (sect308.inc)

;---

; variable vector section

;---

.section vector ; variable vector table

.org VECTOR_ADR

;

. lword dummy_int ; vector (BRK)

.org (VECTOR_ADR + 32)

.lword dummy_int ; DMA0 (software int 8)

.lword dummy_int ; DMA1 (software int 9)

.lword dummy_int ; DMA2 (software int 10)

.lword dummy_int ; DMA3 (software int 11)

.glb _ta0

.lword _ta0 ; TIMER A0 (software int 12)

.lword dummy_int ; TIMER A1 (software int 13)

.lword dummy_int ; TIMER A2 (software int 14)

.lword dummy_int ; TIMER A3 (software int 15)

.lword dummy_int ; TIMER A4 (software int 16)

...

 Registering the function ta0()
for the TA0 interrupt

3-1

Section 3. Compiler

3.1 Interrupt Functions

3.1.1 Coding Interrupt Processing Functions

NC308 allows you to code interrupt processing as C functions. The procedure consists of four steps.

① Coding interrupt processing functions

② Registering the functions on the interrupt vector table

③ Setting the interrupt enable flag (I flag)

• Use the inline assembling.

④ Setting the priority level of the interrupt

• Set the interrupt priority level before enabling the interrupt.

This subsection describes how to code the functions according to the type of interrupt processing.

(1) Coding the hardware interrupt (#pragma INTERRUPT)

This declaration causes the compiler to generate the following instructions at the entry and exit points
of the specified function, in addition to the regular function procedure: The instruction for saving and
restoring all the registers used in the function and the reit instruction. Only the void type is available for
parameters and return values of the interrupt processing function. If the declaration contains any other
type, a warning will be output during compilation.

Figure 3.1 Expansion of the Interrupt Processing Function

#pragma INTERRUPT interrupt-function-name

#pragma INTERRUPT intr

void intr(void)

{

 :

 Interrupt processing

 :

｝

Expanded

 .section program

 .glb _intr

_intr:

 pushm R0,R1,R2,R3,

 A0,A1,FB

 :

 Interrupt processing

 :

 popm R0,R1,R2,R3,

 A0,A1,FB

 reit

Restore the
registers.

Return by the reit instruction

Only the void type is available for both
the parameters and return values.

Save the
registers.

3-2

(2) Coding the interrupt using the register bank (#pragma INTERRUPT/B)

 For the M16C/80 Series, you can switch the register bank to reduce the time for starting the
interrupt processing, while maintaining the contents of the registers. To use this functionality, declare
the following coding:

 The above coding causes the compiler to generate the instruction for switching the register bank,
rather than the instructions for saving and restoring registers. However, you can only specify one
interrupt because the M16C/80 Series product provides the register banks 0 and 1. Use this
functionality for an interrupt that requires a faster startup.

Figure 3.2 Expansion of the Interrupt Processing Function Using the Register Bank

#pragma INTERRUPT/B interrupt-function-name

#pragma INTERRUPT/B intr

void intr(void)

{

 :

 Interrupt processing

 :

}

Expanded

.section program

.glb _intr

_intr:

 fset B

 :

 Interrupt processing

 :

reit

Use register
bank1.

Return by the reit instruction

3-3

(3) Coding the interrupt for enabling multiple interrupts (#pragma INTERRUPT/E)

When the M16C/80 Series compiler accepts an interrupt request, the interrupt enable flag (I flag) is set
to "0", disabling interrupts. By setting the I flag to "1" at the entry point of the interrupt processing
function (immediately after entering the interrupt processing function) to enable multiple interrupts,
you can improve interrupt response. To use this functionality, code as follows:

The above coding causes the compiler to generate the instruction for setting the I flag to "1" at the entry
point of the interrupt processing function (immediately after entering the interrupt processing function).
However, if you want to enable multiple interrupts in the middle of the interrupt processing function,
declare "#pragma INTERRUPT", and then use the asm() function in the middle of the interrupt
processing function to set the I flag to "1".

Figure 3.3 Expansion of the Interrupt Processing Function that Enables Multiple Interrupts

#pragma INTERRUPT/E interrupt-function-name

#pragma INTERRUPT/E intr

void intr (void)

{

…

Interrupt processing

…

}

Expanded

.section program

.glb _intr

_intr:

fset I

pushm R0 , R1 , R2 , R3 ,

A0 , A1 , SB , FB

…

 Interrupt processing

…

popm R0 , R1 , R2 , R3 ,

A0 , A1 , SB , FB

reit
Only the void type is available for both the
parameters and return values.

Return by the reit instruction

Set the I flag.

3-4

3.1.2 Coding Fast Interrupt Processing Functions

NC308 allows you to code fast interrupt processing as C functions that respond to an interrupt in five
cycles, and return from the interrupt in three cycles. However, you can only set a single interrupt at the
interrupt priority level 7 for the fast interrupt. The procedure consists of five steps.

① Coding fast interrupt processing functions

② Setting the interrupt priority level of the fast interrupt

• Set the interrupt priority level before enabling the interrupt.

③ Setting the fast interrupt bit

④ Setting the vector register (VCT).

⑤ Setting the interrupt enable flag (I flag)

• Use the inline assembler.

This subsection describes how to code the functions according to the type of fast interrupt processing.

(1) Coding the fast hardware interrupt (#pragma INTERRUPT/F)

The above declaration causes the compiler to generate the following instructions at the entry and exit
points of the specified function, in addition to the regular function procedure: Instructions for saving
and restoring all the registers used in the function and the freit instruction for returning from the fast
interrupt routine. Only the void type is available for parameters and return values of the interrupt
processing function. If the declaration contains any other type, a warning will be output during
compilation.

Figure 3.4 Expanding the Fast Interrupt Processing Function

#pragma INTERRUPT/F interrupt-function-name

Expanded

.section program

.glb _intr

_intr:

pushm R0 , R1 , R2 , R3 ,

A0 , A1 , SB , FB

…

 Interrupt processing

…

popm R0 , R1 , R2 , R3 ,

A0 , A1 , SB , FB

freit

Return by the freit instruction

Save the registers.

Restore the
registers.

#pragma INTERRUPT/F intr

void intr (void)

{

…

 Interrupt processing

…

}

Only the void type is available for both
the parameters and return values.

3-5

(2) Coding the fast interrupt using the register bank (#pragma INTERRUPT/F/B)

For the M16C/80 Series, you can switch the register bank to reduce the time for starting the fast
interrupt processing, while maintaining the contents of the registers. To use this functionality, declare
the following coding:

The above coding causes the compiler to generate the instruction for switching the register bank, rather
than the instructions for saving and restoring registers. However, you can only specify one interrupt
because the M16C/80 Series product provides the register banks 0 and 1. Use this functionality for an
interrupt that requires the fastest startup.

Figure 3.5 Expansion of the Fast Interrupt Processing Function Using the Register Bank

#pragma INTERRUPT/F/B interrupt-function-name

#pragma INTERRUPT/F/B intr

void intr (void)

{

…

 Interrupt processing

…

}

Expanded

.section program

.glb _intr

_intr:

fset B

...

 Interrupt processing

...

freit

Use register
bank1.

Return by the freit instruction

3-6

3.1.3 Coding Functions for Software Interrupt (INT Instruction) Processing

(1) Coding the software interrupt that calls assembly language functions (#pragma INTCALL)

To use a software interrupt (INT instruction) for the M16C/80 Series, specify "#pragma INTCALL".
This function allows you to generate a pseudo interrupt during debugging.

The coding method differs depending on whether the body of the function to be called by the software
interrupt is written in the assembly language or in C.

If the body of the function to be called is written in the assembly language, code as follows:

If the body of the function to be called is written in the assembly language, you can pass the parameters
via registers. You can also receive return values of other than the structure or union type.

Figure 3.6 Coding Example of #pragma INTCALL that Calls the Assembly Language Function

#pragma INTCALL software-interrupt-number assembly-language-function-name

(register-name, register, ...)

_main:

enter #02H

pushm R1

mov.w -2[FB],R1 ; n

mov.w -4[FB],R0 ; m

int #32

popm R1

exitd

extern void call32 (int , int);

#pragma INTCALL 32 call32 (R0 , R1)

void main (void)

{

int m , n ;

call32 (m , n) ;

｝

}

The prototype declaration of the function must
come before the #pragma INTCALL declaration.

Software interrupt number (decimal)
The available register names are

R2R0, R3R1,

R0, R1, R2, R3, A0, A1,

R0L, R0H, R1L, and R1H.

Parameters are passed to the function via

these registers.

The function "CALL32" is called by the INT instruction.

Expanded

Set the parameters in
the registers.

The body of the function is written
in the assembly language.

3-7

(2) Coding the software interrupt that calls C functions (#pragma INTCALL)

If the body of the function to be called by the software interrupt (INT instruction) is written in C, code
as follows:

If the body of the function to be called is written in C, you can only specify the functions in which all
parameters are passed via the registers, according to the parameter passing rules. The coding cannot
include any parameter of the functions that declare "#pragma INTCALL". Return values of other than
the structure or union type can be received.

Figure 3.7 Coding #pragma INTCALL that Calls the C Function

#pragma INTCALL software-interrupt-number C-function-name ()

void call32 (int);

#pragma INTCALL 32 call32 ()

void main (void)

{

int m;

call32 (m) ;

}

The body of the function is written in C.

The prototype declaration of the function must
come before the #pragma INTCALL declaration.

Software interrupt number (decimal)

Expanded _main:

enter #02H

mov.w -2[FB],R0 ; m

int #32

exitd
The function "CALL32" is called by
the INT instruction.

Set the parameters
in the registers.

The function "CALL32" is called by the INT instruction.

3-8

3.1.4 Registering Interrupt Processing Functions

To use interrupts normally, you must specify interrupt processing functions and register them to an
interrupt vector table.

This subsection describes how to register interrupt processing functions to the interrupt vector table.

(1) Registering the functions in the interrupt vector table

When you specify an interrupt processing function, register it by changing the interrupt vector table in
the sample startup program "sect308.inc".

To change the interrupt vector table:

① Use the .glb instruction to declare the name of the interrupt processing function for external
reference.

② Change the dummy function name "dummy_int" for the interrupt to the name of the
interrupt processing function.

Figure 3.8 Interrupt Vector Table (sect308.inc)

;--

; variable vector section

;--

.section vector ; variable vector table

.org VECTOR_ADR

;

.lword dummy_int ; vector (BRK)

.org (VECTOR_ADR + 32)

.lword dummy_int ; DMA0 (software int 8)

.lword dummy_int ; DMA1 (software int 9)

.lword dummy_int ; DMA2 (software int 10)

.lword dummy_int ; DMA3 (software int 11)

.glb _ta0

.lword _ta0 ; TIMER A0 (software int 12)

.lword dummy_int ; TIMER A1 (software int 13)

.lword dummy_int ; TIMER A2 (software int 14)

.lword dummy_int ; TIMER A3 (software int 15)

.lword dummy_int ; TIMER A4 (software int 16)

 ...

Register the ta0() function
to a TA0 interrupt.

3-9

3.1.5 Coding Example of Interrupt Processing Functions

This subsection provides an example of coding a program that clears the contents of "counter" to zero
each time an INT0 interrupt occurs, and increases the contents of "counter" each time an INT1 interrupt
occurs.

(1) Coding example of interrupt processing functions

Figure 3.9 Coding Example of Interrupt Processing Functions

/* Prototype declaration ********************/

void int0 (void) ;

void int1 (void) ;

#pragma INTERRUPT/F int0

#pragma INTERRUPT int1

/******************************/

unsigned int counter ;

void int0 (void) /* Fast interrupt function */

{

counter = 0 ;

}

void int1 (void) /* Interrupt function */

{

if (counter < 9) {

counter ++ ;

}

else {

counter = 0 ;

}

}

void main (void)

{

INT0IC = 0x07; /* Setting the fast interrupt priority level */

RLVL = 0x08; /* Fast interrupt specification */

asm (" LDC #_int0,VCT "); /* Setting the vector register */

INT1IC = 0x01 ; /* Setting the interrupt priority level */

asm (" fset i ") ; /* Interrupt enabled */

while (1) ; /* Interrupt wait loop */

}

3-10

(2) Registering the functions in the interrupt vector table

Figure 3.10 shows an example of registering the functions in the interrupt vector table.

Figure 3.10 Example of Registering the Functions in the Interrupt Vector Table

;－－－－－－－－－－－－－－－－－－－－－－－－－

; variable vector section

;－－－－－－－－－－－－－－－－－－－－－－－－－

.section vector ; variable vector table

.org VECTOR_ADR

 ...

.org (VECTOR_ADR + 32)

.lword dummy_int ; DMA0 (software int 8)

.lword dummy_int ; DMA1 (software int 9)

.lword dummy_int ; DMA2 (software int 10)

.lword dummy_int ; DMA3 (software int 11)

.lword dummy_int ; TIMER A0 (software int 12)

.lword dummy_int ; TIMER A1 (software int 13)

.lword dummy_int ; TIMER A2 (software int 14)

.lword dummy_int ; TIMER A3 (software int 15)

.lword dummy_int ; TIMER A4 (software int 16)

.lword dummy_int ; uart0 trance (software int17)

.lword dummy_int ; uart0 receive (software int18)

.lword dummy_int ; uart1 trance (software int19)

.lword dummy_int ; uart1 receive (software int 20)

.lword dummy_int ;TIMER B0 (software int 21)

.lword dummy_int ;TIMER B1 (software int 22)

.lword dummy_int ;TIMER B2 (software int 23)

.lword dummy_int ;TIMER B3 (software int 24)

.lword dummy_int ;TIMER B4 (software int 25)

.lword dummy_int ; INT5 (software int 26)

.lword dummy_int ; INT4 (software int 27)

.lword dummy_int ; INT3 (software int 28)

.lword dummy_int ; INT2 (software int 29)

.glb _int1

.lword _int1 ; INT1 (software int 30)

.glb _int0

.lword _int0 ; INT0 (software int 31)

.lword dummy_int ; TIMER B5 (software int 32)

 ...

3-11

3.2 Assembler Macro

NC308 allows you to code some assembly language instructions as C functions (these functions are
called assembler macro functions).

The assembler macro functions let you directly code, in C programs, assembly language instructions
that NC308 does not expand in ordinary C coding. This enables easier tuning of programs.

This subsection describes how to specify and use the assembler macro functions.

3.2.1 Assembly Language Instructions that can Be Specified Using Assembler
Macro Functions

NC308 allows you to use assembler macro functions to specify 18 types of assembly language
instructions.

The assembler macro function names are the same as the assembly language instructions shown in
lowercase letters. These function names are followed by "_b", "_w", or "_l" indicating the bit length for
operations. Tables 3.1 and 3.2 show the assembly language instructions that can be specified using the
assembler macro functions.

Table 3.1 Assembly Language Instructions that can Be Specified Using Assembler Macro
Functions (1)

Assembly
language

instruction

Assembler
macro

function
name

Description Format

dadd_b char dadd_b(char val1,char val2) DADD

dadd_w

Returns the result of
decimal addition on val1
plus val2. int dadd_w(int val1,int val2)

dadc_b char dadc_b(char val1,char val2) DADC

dadc_w

Returns the result of
decimal addition with
carry on val1 plus val2. int dadc_w(int val1,int val2)

dsub_b char dsub_b(char val1, char
val2);

DSUB

dsub_w

Returns the result of
decimal subtraction on
val1 minus val2.

int dsub_w(int val1, int val2);

dsbb_b char dsbb_b(char val1, char
val2);

DSBB

dsbb_w

Returns the result of
decimal subtraction with
borrow on val1 minus
val2. int dsbb_w(int val1, int val2);

rmpa_b long rmpa_b(long init, int count,
char *p1, char *p2);

RMPA

rmpa_w

Returns the result of a
sum-of-products
operation, using init as
the initial value, count as
the number of times, and
p1 and P2 as the start
addresses where
multipliers are stored.

long rmpa_w(long init, int count,int
*p1, int *p2);

max_b char max_b(char val1, char val2);MAX

max_w

Returns the value val1
or val2 whichever is
found larger. int max_w(intr val1, int val2);

3-12

Assembly
language

instruction

Assembler
macro

function
name

Description Format

min_b char min_b(char val1, char val2);MIN

min_w

Returns the value val1
or val2 whichever is
found smaller. int min_w(intr val1, int val2);

Table 3.2 Assembly Language Instructions that can Be Specified Using Assembler Macro
Functions (2)

Assembly
language

instruction

Assembler
macro

function
name

Description Format

smovb_b void smovb_b(char *p1, char *p2,
unsigned int count);

SMOVB

smovb_w

Transfers strings from the
address p1 to the address
p2 as many times as
indicated by count in the
backward direction.

void smovb_w(int *p1, int *p2,
unsigned int count);

smovf_b void smovf_b(char *p1, char *p2,
unsigned int count);

SMOVF

smovf_w

Transfers strings from the
address p1 to the address
p2 as many times as
indicated by count in the
forward direction.

void smovf_w(int *p1, int *p2,
unsigned int count);

smovu_b void smovu_b(char *p1, char
*p2);

SMOVU

smovu_w

Transfers strings from the
address p1 to the address
p2 as many times as
indicated by count in the
forward direction until zero is
detected.

void smovu_w(int *p1, int *p2);

sin_b void sin_b(char *p1, char *p2,
unsigned int count);

SIN

sin_w

Transfers strings from the
fixed address p1 to the
address p2 as many times
as indicated by count in the
forward direction.

void sin_w(int *p1, int *p2,
unsigned int count);

sout_b void sout_b(char *p1, char *p2,
unsigned int count);

SOUT

sout_w

Transfers strings from the
address p1 to the address
p2 as many times as
indicated by count in the
backward direction

void sout_w(int *p1, int *p2,
unsigned int count);

sstr_b void sstr_b(char val, char
*p,unsigned int count);

SSTR

sstr_w

Stores strings, using data val
to be stored, address p, and
count as the number of
times to transfer data. void sstr_w(int val, int *p,unsigned

int count);

rolc_b unsigned char rolc_b(unsigned
char val);

ROLC

rolc_w

Returns the value of val after
rotating it left by 1 bit
including carry.

unsigned int rolc_w(unsigned int
val);

3-13

Assembly
language

instruction

Assembler
macro

function
name

Description Format

rorc_b unsigned char rorc_b(unsigned
char val);

RORC

rorc_w

Returns the value of val after
rotating it right by 1 bit
including carry.

unsigned int rrlc_w(unsigned int
val);

rot_b unsigned char rot_b(signed char
count,unsigned char val);

ROT

rot_w

Returns the value of val after
rotating it as many times as
indicated by count.

unsigned int rot_w(signed char
count,unsigned int val);

sha_b unsigned char sha_b(signed char
count, unsigned char val);

sha_w unsigned int sha_w(signed char
count, unsigned int val);

SHA

sha_l

Returns the value of val after
arithmetically shifting it as
many times as indicated by
count.

unsigned long sha_l(signed char
count, unsigned longval);

shl_b unsigned char shl_b(signed char
count, unsigned char val);

shl_w unsigned int shl_w(signed char
count, unsigned int val);

SHL

shl_l

Returns the value of val after
logically shifting it as many
times as indicated by count.

unsigned long shl_l(signed char
count, unsigned longval);

3-14

3.2.2Decimal Addition Using the Assembler Macro Function "dadd_b"

When you call and use the NC308 assembler macro functions, you must include the "asmmacro.h" file
that defines the assembler macro functions.

Figure 3.11 shows an example of decimal addition using the assembler macro function "dadd_b".

Figure 3.11 Decimal Addition Using the Assembler Macro Function "dadd_b"

#include <asmmacro.h>

char result ;

void main (void)

{

result = dadd_b(0x01,0x09);

}

asmmacro.h must be included.

Assembler macro function call

;#### ASM START

_dadd_b .macro

dadd.b R0H,R0L

.endm

…

;#### ASM END

.SECTION program

.glb _main

_main:

mov.b #01H,R0L

mov.b #09H,R0H

_dadd_b

movb R0L,_result:16

…

. SECTION bss_NO,DATA

.glb _result

_result:

.blkb 1

.end

Expanded

dadd macro
definition

dadd instruction macro call

3-15

3.2.3 Transferring Strings Using the Assembler Macro Function "smovf_b"

Figure 3.12 shows an example of transferring strings using the assembler macro function "smovf_b".

Figure 3.12 Transferring Strings Using the smovf_b Assembler Macro Function

#include <asmmacro.h>

char src_string[] = "ABCDEFG" ;

char dest_string[8];

void main (void)

{

smovf_b(src_string, dest_string,

sizeof(src_string));

}

Include asmmacro.h.

Assembler macro function call

;#### ASM START

_smovf_b .macro

pushm R3,A0,A1

smovf.b

popm R3,A0,A1

. endm

...

;#### ASM END

.SECTION program

.glb _main

_main:

pushm R3,A0,A1

mov.w #0008H,R3

mov.w #(_dest_string&0FFFFH),A1

mov.w #(_src_string&0FFFFH),A0

_smovf_b

popm R3,A0,A1

rts

...

.SECTION data_NE,DATA

.glb _src_string

_src_string:

.blkb 8

.SECTION data_NEI,ROMDATA

.byte 41H ;'A'

.byte 42H ;'B'

.byte 43H ;'C'

...

.SECTION bss_NE,DATA

.glb _dest_string

_dest_string:

.blkb 8

.end

Macro definition of
the smovf instruction

Macro call for the smovf instruction

Actually, the following is expanded:

pushm R3,A0,A1

smovf.b

popm R3,A0,A1

Expanded

3-16

3.2.4 Sum-of-Products Operation Using the Assembler Macro Function "rmpa_w"

Figure 3.12 shows an example of sum-of-products operation using the assembler macro function
"rmpa_w".

Figure 3.13 Sum-of-Products Operation Using the Assembler Macro Function "rmpa_w"

#include <asmmacro.h>

int str1[10] = {0,1,2,3,4,5,6,7,8,9};

int str2[10] = {0,1,2,3,4,5,6,7,8,9};

long result ;

void main (void)

{

result = rmpa_w(0, 9, str1,str2);

}

Include asmmacro.h.

Initial value

Operation count

Assembler macro function call

;#### ASM START
...
_rmpa_w .macro
pushm R1,R3,A1,A0
mov.w #00H,R1
rmpa.w
popm R1,R3,A1,A0
.endm

;#### ASM END
.SECTION program
.glb _main

_main:
mov.w #(_str2&0FFFFH),A1
mov.w #(_str1&0FFFFH),A0
mov.w #0009H,R3
mov.l #00000000H,R2R0
_rmpa_w
mov.l R2R0,_result:16

.ECTION data_NE,DATA
.glb _str1

_str1:
.blkb 20
.glb _str2

_str2:
.blkb 20

.SECTION data_NEI,ROMDATA
.word 0000H
.word 0001H
.word 0002H
.word 0003H

...
.SECTION bss_NO,DATA
.glb _result

_result:
.blkb 4
.end

Macro call for the rmpa instruction

Actually, the following is expanded:

pushm R1,R3,A1,A0

mov.w #00H,R1

rmpa.w

popm R1,R3,A1,A0

Expanded

3-17

3.2.5 #pragma __ASMMACRO

For NC308, you can use #pragma__ASMMACRO to make any assembler instruction string into
assembler macro functions.

Function

Declares a function defined by the assembler macro.

Syntax

#pragma __ASMMACRO function-name (register-name,...)

Rules

1. You must enter a prototype declaration of the function before the #pragma __ASMMACRO
declaration. You must declare the assembler macro functions as static.

2. You cannot declare a function that does not have any parameter. Parameters are passed via
registers. Specify the register matching the parameter type (based on #pragma PARAMETER).

3. When you define an assembler macro, the macro name must be the declared function name
prefixed by an underscore (_).

4. The return values are set as shown below according to the function calling rules. You cannot
declare the compound types (structure and union types) as a return value.

char and _Bool types: R0L float type: R2R0

int and short types: R0 double type: R3R2R1R0

long type: R2R0 long long type: R3R1R2R0

5. Registers whose contents will be changed in the assembler macro must be saved at the
beginning of the assembler macro. The registers must be restored immediately before the return.
(You do not need to save or restore the register storing the return values).

Example

Figure 3.14 Example of Using Assembler Macro

static long mul(int, int); /* Be sure to declare "static". */

#pragma __ASMMACRO mul(R0, R2)

#pragma ASM

_mul .macro

mul.w R2,R0 ; The return value is set in R2R0.

.endm

#pragma ENDASM

long l;

void test_func(void)

{

l=mul(2,3);
}

3-18

3.3 Pragma Functions and Options for Reducing ROM Area

Table 3.3 Pragma Functions and Options for Reducing ROM Area

Subsection Title Description

3.3.1 #pragma SBDATA Uses SB relative addressing to access variables.

3.3.2 #pragma SB16DATA Uses 2-byte SB relative addressing to access
variables.

3.3.3 #pragma BIT Generates one-bit manipulation instructions in the
16-bit absolute addressing mode.

3.3.4 #pragma SPECIAL Compresses a jump subroutine instruction from four
bytes to two bytes.

3.3.5 -fjsrw Uses the JSR.W instruction to call a function.

3.3.6 -OR Performs maximum optimization of ROM efficiency.

3.3.7 -fno_align Does not align the start address of the function.

3.3.8 -Wno_used_function Outputs a warning for unused functions.

3.3.1#pragma SBDATA

This option accesses the specified variables in the relative addressing mode using the SB register. By
changing the access mode for frequently accessed variables to the SB relative addressing, you can
improve the efficiency of the code. The variables specified for the SB relative addressing are assigned
to the SBDATA attribute section, and are referenced using the offset from the start address of the
SBDATA attribute section saved in the SB register. This causes the expanded code to be more compact
than the one that loads addresses for referencing, and helps improve the ROM efficiency. The format is
as follows:

#pragma SBDATA variable-name

The maximum access area for the SB register-based addressing is 256 bytes from the SB register. The
address specification only requires one byte. Specifying this type of addressing for frequently-used
variables will reduce the ROM area.

Before using SBDATA Using SBDATA
int a;
a=1;

#pragma SBDATA a
int a;
a=1;

 .GLB __SB__
 .SB __SB__
 .FB 0
...
 mov.w #0001H,_a

 .GLB __SB__
 .SB __SB__
 .FB 0
 .SBSYM _a
...
 mov.w #0001H,_a

Figure 3.15 Example of Using Addressing Mode with SBDATA

3-19

3.3.2 #pragma SB16DATA

SBDATA specifies addressing that uses one-byte offset from SB register. SB16DATA specifies
addressing that uses two-byte offset. For this type of addressing, the maximum access area is 64 Kbytes
from the SB register. The address specification only requires two bytes. Specifying #pragma
SB16DATA for frequently-used variables will reduce the ROM area. The format is as follows:

#pragma SB16DATA variable-name

Before using SB16DATA Using SB16DATA
int a;
a=1;

#pragma SB16DATA a
int a;
a=1;

 .GLB __SB__
 .SB __SB__
 .FB 0
...
 mov.w #0001H,_a

 .GLB __SB__
 .SB __SB__
 .FB 0
 .SBSYM16 _a
...
 mov.w #0001H,_a

Figure 3.16 Example of Using Addressing Mode with SB16DATA

3-20

3.3.3 #pragma BIT

This option declares that the specified external variable is in the range of addresses (from 00000H to
01FFFH) available for one-bit manipulation instructions in the 16-bit absolute addressing mode. This
allows you to generate one-bit manipulation instructions in the 16-bit absolute addressing mode. (This
function is only available for NC30WA).

The format is as follows:

#pragma BIT variable-name

Before using #pragma BIT Using #pragma BIT
int sym
sym=0x01|sym

#pragma BIT sym
int sym
sym=0x01|sym

or.w #01H,_sym bset 0,_sym

Figure 3.17 Bit Operation Using #pragma BIT

3-21

3.3.4 #pragma SPECIAL

The special page compresses a jump subroutine instruction from four bytes of JSR.A _func to two
bytes of JSRS number. This reduces the ROM area.

The format is as follows:

#pragma SPECIALΔ[/ C]Δcall-numberΔfunction-name()

#pragma SPECIALΔ[/ C]Δfunction-name(vect=call-number)

The functions declared in #pragma SPECIAL are mapped to the addresses created by adding
0FF0000H to the address set in the special page vector tables, and are therefore subject to special page
subroutine calls. You may specify the following switch in the declaration:

[/C]

This switch generates the code for saving the required registers when the declared function is called.

You can specify a call number in the declaration.

Specify a call number and the compile option -fmake_special_table (-fMST) for compiling source files.
The compiler will automatically generate a special page vector table.

Functions declared using #pragma SPECIAL are mapped to the program_S section.

You must map the program_S section between 0FF0000H and 0FFFFFFH.

You can specify call numbers from 18 to 255 in decimal only. As a label,
"_SPECIAL_calling-number:" is output to the start address of functions declared using #pragma
SPECIAL. Set this label in the special page subroutine table in the startup file.

The above setting is unnecessary if the -fmake_special_table (-fMST) option is specified.

If you specify different call numbers for a function, the call number declared later takes effect.

Example:
#pragma SPECIAL func(vect=20)

#pragma SPECIAL func(vect=30)// Call number 30 takes effect

If functions are defined in one file and function calls are defined in another file, you must
specify this declaration in both files.

Before using #pragma SPECIAL Using #pragma SPECIAL
void func(unsigned int, unsigned int);
void main()
{

int i, j;
i = 0x7FFD;
j = 0x007F;
func(i, j);

}

#pragma SPECIAL 20 func()
void func(unsigned int, unsigned int);
void main()
{

int i, j;
i = 0x7FFD;
j = 0x007F;
func(i, j);

}

 push.w -2[FB] ; j
 mov.w -4[FB],R0 ; i
 jsr $func

 push.w -2[FB] ; j
 mov.w -4[FB],R0 ; i
 jsrs #20

Figure 3.18 Example of Using the #pragma SPECIAL Declaration

3-22

3.3.5 –fjsrw

The compiler uses the JSR.A instruction to call a function that has been defined outside the file.
However, most functions can be called by the JSR.W instruction if the program is not so large.

In this case, you can reduce the amount of code in the ROM as follows :

Compile with the source files with the -fJSRW option. Then, use "#pragma JSRA function-name" to
declare the functions that caused an error during linking.

Note: When you use the -OGJ option, the most suitable jmp instruction is selected during linking.

C source Without -fjsrw With -fjsrw
/*file 1*/
void f() {}

/* file 2*/
int main()
{

f();
}

 .GLB __SB__
 .SB __SB__
 .FB 0
...
 jsr _f

 .OPTJ JSRW
 .GLB __SB__
 .SB __SB__
 .FB 0
...
 jsr _f

Figure 3.19 Example of Using –fjsrw

3-23

3.3.6–OR

This option performs the maximum optimization to minimize the amount of code in the ROM, although
the speed may be compromised. This option can be specified with the -g and -O options. Optimization
with this option may partly modify the source line information. This may cause the program to behave
differently during debugging. If you do not want to modify the source line information, use the
-Ono_break_source_debug (-ONBSD) option to suppress optimization.

Figure 3.20 shows an example of optimization using the -OR option. The common expressions are
unified to reduce the amount of code in the ROM.

C source Without optimization With optimization
If(b==1){
 sub();
 return a;
} else if(b==2){
 sub()
 return a;
} else {
return 0;
}

;## # C_SRC : if(b==1)
 cmp.w #0001H,_b:16
 jne L1
;## # C_SRC : sub();
 jsr _sub
;## # C_SRC : return a;
 mov.w _a:16,R0
 rts
;## # C_SRC : else if(b==2)
L1:
 cmp.w #0002H,_b:16
 jne L11
;## # C_SRC : sub();
 jsr _sub
;## # C_SRC : return a;
 mov.w _a:16,R0
 rts
;## # C_SRC : else
L11:
;## # C_SRC : return 0;
 mov.w #0000H,R0
 rts

;## # C_SRC : if(b==1)
 mov.w _b:16,R0
 cmp.w #0001H,R0
 jne L5
;## # C_SRC : sub();
L31:
 jsr _sub
;## # C_SRC : return a;
 mov.w _a:16,R0
 rts
;## # C_SRC : else if(b==2)
L5:
 cmp.w #0002H,R0
 jeq L31
;## # C_SRC : return 0;
 mov.w #0000H,R0
 rts

Figure 3.20 Example of Optimization Using –OR: Unifying Common Expressions

3-24

3.3.7–fno_align

This option does not align the start address of the function. This option prevents .align from being
inserted to the beginning of the function, thus reducing the ROM area.

C source Without -fno_align With -fno_align
int f()
{
 return 0;
}

;## # FUNCTION f
;## # ARG Size(0) Auto Size(0)
 Context Size(4)
 .SECTION program,CODE,ALIGN
 ._inspect 'U', 2, "program", "program",
0
 ._file
 'C:/Hew3/fno_align/fno_align/fno_align.c'
 ._type 256,'x',16,0
 ._func 'f','G',0,256,_f,0
 ._inspect 'F', 's', "f", "_f", 'G', 4
 .align
;## # C_SRC : {
 .glb _f
_f:

;## # FUNCTION f
;## # ARG Size(0) Auto Size(0)
 Context Size(4)
 .SECTION program,CODE
 ._inspect 'U', 2, "program", "program", 0
 ._file
 'C:/Hew3/fno_align/fno_align/fno_align.c'
 ._type 256,'x',16,0
 ._func 'f','G',0,256,_f,0
 ._inspect 'F', 's', "f", "_f", 'G', 4
;## # C_SRC : {
 .glb _f
_f:

Figure 3.21 Example of Using –fno_align

3-25

3.3.8 –Wno_used_function

This function displays unused global functions during linking. Deleting unused functions will reduce
the ROM area.

C source Warning message
void f()
{
}
int main()
{
}

C:¥Hew3¥test2¥test2¥test2.c(20) : Warning (ln308): Global function 'f'is never used

Figure 3.22 Example of Using –Wno_used_function

3-26

3.4 Pragma Function and Options for Speeding UP Processing

Table 3.4 Pragma Function and Options for Speeding Up Processing

Subsection Title Description

3.4.1 #pragma STRUCT Performs the alignment for the structure to improve
the access speed.

3.4.2 -Ostack_frame_align Performs the alignment for the stack frame to improve
the access speed.

3.4.3 -OS Performs maximum optimization of speed.

3.4.4 -Oloop_unroll[=count] Unrolls the loop.

3.4.5 -Ofloat_to_inline Performs inline expansion of the routine at runtime for
floating point operations.

3-27

3.4.1#pragma STRUCT

This option performs the alignment for the structure to improve the access speed.

Format 1.#pragma STRUCT structure-tag-name unpack

2.#pragma STRUCT structure-tag-name arrange

In the compiler, structures are packed. For example, the members of the structure in Figure 3.23 are
arranged without any padding in the order they are declared.

Figure 3.23 Example of Mapping Structure Members (1)

struct s

{

 int i;

 char c;

 int j;

};

i

c

j

3-28

The extended function of the compiler allows you to control the mapping of structure members. Figure
3.24 shows an example of mapping the structure members when packing of the structure shown in
Figure 3.23 is inhibited using #pragma STRUCTunpack.

Figure 3.24 Example of Mapping Structure Members (2)

As shown in Figure 3.24, if the total size of the structure members is an odd number of bytes, #pragma
STRUCTunpack adds 1 byte as packing after the last member. Therefore, if you use #pragma
STRUCTunpack to inhibit padding, the size of all structures will be an even number of bytes.

The extended function of the compiler allows you to map all the odd-sized structure members first,
followed by even-sized members. Figure 3.25 shows an example of mapping when the structure shown
in Figure 3.23 is arranged using #pragma STRUCT arrange.

Figure 3.25 Example of Mapping Structure Members (3)

#pragma STRUCT s unpack

struct s

{

 int i;

 char c;

 int j;

};

i

c

j

Padding

#pragma STRUCT s arrange

struct s

{

 int i;

 char c;

 int j;

};

i

j

 c

3-29

Using #pragma STRUCT unpack and #pragma STRUCT arrange together aligns the even-sized
members.

Default unpack
struct A
{

int a;
char b;
int c;

};

f()
{

struct A a,b;
a.a=1; a.b=2; a.c=3;
b.a=4; b.b=5; b.c=6;

}

#pragma STRUCT A unpack
struct A
{

int a;
char b;
int c;

};

f()
{

struct A a,b;
a.a=1; a.b=2; a.c=3;
b.a=4; b.b=5; b.c=6;

}

;## # C_SRC : a.a=1;
 mov.w #0001H,-10[FB] ; a
;## # C_SRC : a.b=2;
 mov.b #02H,-8[FB] ; a
;## # C_SRC : a.c=3;
 mov.w #0003H,-7[FB] ; a
;## # C_SRC : b.a=4;
 mov.w #0004H,-5[FB] ; b
;## # C_SRC : b.b=5;
 mov.b #05H,-3[FB] ; b
;## # C_SRC : b.c=6;
 mov.w #0006H,-2[FB] ; b

;## # C_SRC : a.a=1;
 mov.w #0001H,-12[FB] ; a
;## # C_SRC : a.b=2;
 mov.b #02H,-10[FB] ; a
;## # C_SRC : a.c=3;
 mov.w #0003H,-9[FB] ; a
;## # C_SRC : b.a=4;
 mov.w #0004H,-6[FB] ; b
;## # C_SRC : b.b=5;
 mov.b #05H,-4[FB] ; b
;## # C_SRC : b.c=6;
 mov.w #0006H,-3[FB] ; b

Figure 3.26 Example of Using #pramga STRUCT (1)

3-30

arrange arrange+unpack
#pragma STRUCT A arrange
struct A
{

int a;
char b;
int c;

};

f()
{

struct A a,b;
a.a=1; a.b=2; a.c=3;
b.a=4; b.b=5; b.c=6;

}

#pragma STRUCT A arrange
#pragma STRUCT A unpack
struct A
{

int a;
char b;
int c;

};

f()
{

struct A a,b;
a.a=1; a.b=2; a.c=3;
b.a=4; b.b=5; b.c=6;

}

;## # C_SRC : a.a=1;
 mov.w #0001H,-10[FB] ; a
;## # C_SRC : a.b=2;
 mov.b #02H,-6[FB] ; a
;## # C_SRC : a.c=3;
 mov.w #0003H,-8[FB] ; a
;## # C_SRC : b.a=4;
 mov.w #0004H,-5[FB] ; b
;## # C_SRC : b.b=5;
 mov.b #05H,-1[FB] ; b
;## # C_SRC : b.c=6;
 mov.w #0006H,-3[FB] ; b

;## # C_SRC : a.a=1;
 mov.w #0001H,-12[FB] ; a
;## # C_SRC : a.b=2;
 mov.b #02H,-8[FB] ; a
;## # C_SRC : a.c=3;
 mov.w #0003H,-10[FB] ; a
;## # C_SRC : b.a=4;
 mov.w #0004H,-6[FB] ; b
;## # C_SRC : b.b=5;
 mov.b #05H,-2[FB] ; b
;## # C_SRC : b.c=6;
 mov.w #0006H,-4[FB] ; b

Figure 3.27 Example of Using #pragma STRUCT (2)

3-31

3.4.2 -Ostack_frame_align

If an even-sized auto variable is mapped to an odd address, memory access requires one more cycle
than when the variable is mapped to an even address. This option causes the alignment that maps the
even-sized auto variable to the even address. This enables fast memory access. (This option is available
only for NC30WA).

Figure 3.28 Example of Alignment by –Ostack_frame_align

C source Without -Ostack_frame_align With -Ostack_frame_align
void f()
{
 int a;
 int b;
 a=1;
 b=2;
 ...
}

;## # C_SRC : a=1;
 mov.w #0001H,-2[FB] ; a
;## # C_SRC : b=2;
 mov.w #0002H,-4[FB] ; b

;## # C_SRC : a=1;
 mov.w #0001H,-5[FB] ; a
;## # C_SRC : b=2;
 mov.w #0002H,-3[FB] ; b

Figure 3.29 Example of –Ostack_frame_align

void func(arg)

char arg;

{

 char c;

 int a;

 int b;

 ...

｝

FB

SP

Alignment

arg

return PC

save FB

c

b

a

3-32

3.4.3 -OS

This option performs the maximum optimization to obtain the fastest speed as possible, although the
amount of code in the ROM may increase. This option can be specified along with the -g and -O
options.

C source With optimization Without optimization
for(i=0;i<100;i++)
 a[i]=l*4;

;## # C_SRC : for(i=0;i<100;i++)
 mov.w #0000H,_i:16
L1:
;## # C_SRC : for(i=0;i<100;i++)
 cmp.w #0064H,_i:16
 jge L5
;## # C_SRC : a[i]=l*4;
 mov.w _l:16,R0
 shl.w #2,R0
 indexwd.w _i:16
 mov.w R0,_a:16
 add.w #0001H,_i:16
 jmp L1
 L5:

 mov.w #0000H,_i:16
 mov.w _l:16,R0
 shl.w #2,R0
L3:
 ._line 26
;## # C_SRC : a[i]=l*4;
 indexwd.w _i:16
 mov.w R0,_a:16
 add.w #0001H,_i:16
 cmp.w #0064H,_i:16
 jlt L3

Figure 3.30 Example of Optimization by -OS

3-33

3.4.4 -Oloop_unroll[=count]

This option unrolls the code as many times as the loop count without revolving the loop statement. You
may omit the loop count. If you omit the loop count, this option is applied to up to five loop statements.
This option removes branches and counter calculations to improve the execution speed. However, this
reduces the ROM efficiency.

C source Without optimization With optimization
for(i=0;i<3;i++)
{
 a[i]=i;
}

 ;## # C_SRC : for(i=0;i<3;i++)
 mov.w #0000H,-2[FB] ; i
 L1:
 ;## # C_SRC : for(i=0;i<3;i++)
 cmp.w #0003H,-2[FB] ; i
 jge L5
 ;## # C_SRC : a[i]=i;
 indexwd.w -2[FB] ; i
 mov.w -2[FB],_a:16 ; i
 add.w #0001H,-2[FB] ; i
 jmp L1
L5:

 mov.w #0000H,-2[FB] ; i
 mov.w #0002H,A0
 mul.w #0000H,A0
 mov.w A0,A0
 mov.w #0000H,_a:16[A0]
 mov.w #0001H,-2[FB] ; i
 mov.w #0002H,A0
 mul.w #0001H,A0
 mov.w A0,A0
 mov.w #0001H,_a:16[A0]
 mov.w #0002H,-2[FB] ; i
;## # C_SRC : a[i]=i;
 mov.w #0002H,R0
 indexwd.w R0
 mov.w #0002H,_a:16
 mov.w #0003H,-2[FB] ; i

Figure 3.31 Example of Unrolling a Loop

3-34

3.4.5 -Ofloat_to_inline

This option performs inline expansion of floating-point runtime libraries to speed up the processing of
floating-point operations (only for comparison and multiplication). This option is available only for the
M32C/80 Series. When using this option, you must also specify the compile option "-M82".

Source code Without -Ofloat_to_inline With -Ofloat_to_inline
float f;
long l;
l=f;

 push.l _f:16
 jsr.a __f4toi4
 add.l #04H,SP
 mov.l R2R0,_l:16

;## # C_SRC : l=f;
 mov.w _f+2:16,R0
 mov.w _f:16,R2
 btst 7,R0H
 scc R3
 mov.w R0,R1
 shl.w #-07H,R1
 and.w #0ffH,R1
 xchg.w R0,R2
 and.w #07fH,R2
 mov.w R1,R1
 jne ?+
 mov.l R2R0,R2R0
 jeq M1
?:
 btst 7,R1L
 jc ?+
 cmp.w #07fH,R1
 jne M1
?:
 add.w #062H,R1
 tst.w #0ff00H,R1
 jeq M2
 mov.w R3,R3
 jeq ?+
 mov.l #80000000H,R2R0
 jmp M3
?:
 mov.l #7fffffffH,R2R0
 jmp M3
M2:
 dec.w R1
 or.w #0080H,R2
 shlnc.l #8H,R2R0
?:
 inc.w R1
 cmp.w #0100H,R1
 jeq M4
 shlnc.l #-1,R2R0
 jmp ?-
M4:
 cmp.w #1,R3
 jne M3
 not.w R0
 not.w R2
 add.l #01H,R2R0
 jmp M3
M1:
 mov.l #0,R2R0
M3:

Figure 3.32 Example Optimization with –Ofloat_to_inline

3-35

3.4.6 –Ostatic_to_inline

This option treats a static function (a function declared to be static) as an inline function (a function
declared to be inline), and generates an inline-expanded assembling code.

The compiler treats the static function as an inline function and generates an inline-expanded
assembling code when the following conditions are satisfied:

(1) This option is applicable to a static function whose entity is specified before a function call.

(The function call and the entity of that function must be contained in the same source file.)

(Ignore this condition if you specify the -Oforward_function_to_inline option.)

(2) Address acquisition for the target static function is omitted in the program.

(3) The recursive call of the target static function is not performed.

(4) The construction of a frame (reservation of an auto variable, and so on) is not performed in the
assembling code output of a compiler. (Whether the frame construction is performed depends on
the contents of the description of the target function, and another optimization option.)

(Ignore this condition if you specify the -Oforward_function_to_inline option.)

C source Without -Ostatic_to_inline With -Ostatic_to_inline
static int f(int a,int b)
{
 return a+b;
}
int c;
void main()
{
 c=f(2,3);
}

 push.w #0003H
 mov.w #0002H,R0
 jsr $f
 add.l #02H,SP
 mov.w R0,_c:16

 mov.w #0005H,_c:16

Figure 3.33 Example of Using –Ostatic_to_inline

3-36

3.5 Pragma Functions and Options for Reducing ROM Area and
Speeding Up Processing

Table 3.5 Pragma Functions and Options for Reducing ROM Area and Speeding Up Processing

Subsection Title Description

3.5.1 -O[1-5] Performs optimization.

3.5.2 -Osp_adjust Performs optimization that corrects the stack pointer
at a time.

3.5.3 -fuse_DIV Uses the div instruction to perform division.

3.5.4 -Wno_used_argument Outputs a warning for unused arguments.

3.5.5 -fsmall_array Calculates subscripts of arrays in 16 bits.

3.5.6 -fdouble_32 Handles double data as float data.

3-37

3.5.1-O[1-5]

This option perform the maximum optimization for faster processing and reduced amount of code in
the ROM. This option can be specified with the -g option. The system assumes -O3 if you do not
specify any number (level).

-O1: Same as when -O3, -Ono_bit, -Ono_break_source_debug, -Ono_float_const_fold, and
-Ono_stdlib are valid.

-O2: Same as -O1.

-O3: Performs the maximum optimization for faster processing and reduced amount of code in the
ROM.

-O4: Validates -O3 and -Oconst.

-O5: Performs the maximum optimization that improves common subexpressions (when the -OR
option is concurrently specified), transfer of character strings, and comparison (when the -OS option is
concurrently specified).

However, a normal code may be unable to be output when the following conditions are satisfied:

• Different variables point to the same memory position simultaneously.

• These variables are used within the same function.

Figure 3.34 Example of the Source Specification with "-O5" that Causes Incorrect Operations

Note:
You cannot use the BTSTC or BTSTS bit manipulation instructions to write to or read data
from registers in the SFR area.
If you use the optimization option (-O5), the compiler may generate the bit manipulation
instructions (BTSTC and BTSTS) for the assembler code. If you use the -O5 optimization
option in the following compile specification, an interrupt request bit cannot be determined
correctly, resulting in unexpected operations.

Example:

int a=3;

int *p=&a;

test()

{

int b;

*p=9;

a=10;

b=*p; //Optimization will replace ”p” with ”9”.

print(“b=%d(expect b=10)¥n”,b);

}

Result)

b=9(expect b=10)

3-38

Figure 3.35 Example when Optimization Options Cannot be Used

If you find that the bit manipulation instructions (BTSTC and BTSTS) are output to the SFR area, take
the following measures before performing the compilation. Make sure that the generated code does not
have any problem in these settings:

• Use an optimization option other than -O5.

• Use the ASM function to directly specify the instruction in the program.

• Add the -Ono_asmopt (or -ONA) option.

[Example: C source that cannot be used with the optimization option]

 #pragma ADDRESS TA0IC 006Ch /* M16C/80 Timer A0 interrupt control register

*/

struct {

char ILVL : 3;

char IR : 1; /* An interrupt request bit */

char dmy : 4;

} TA0IC;

void wait_until_IR_is_ON(void)

{

while (TA0IC.IR == 0) /* Wait for 1 */

{

;

}

TA0IC.IR = 0; /* Return 1 to 0 */

}

3-39

3.5.2-Osp_adjust

This option performs optimization by combining stack correction codes after function calls. Usually,
the compiler corrects a stack pointer to release the parameter area for functions each time a function is
called. When this option is specified, the stack pointer is corrected collectively, rather than for each
function call. The -Osp_adjust option reduces the amount of code used in the ROM and speeds up the
processing. However, the amount of stack used may increase.

C source Without -Osp_adjust With -Osp_adjust
main()
{
 f(1.1);
 g(1.1);
}

_main:
;## # C_SRC : f(1.1);
 push.l #3ff19999H
 push.l #9999999aH
 jsr _f
 add.l #08H,SP
;## # C_SRC : g(1.1);
 push.l #3ff19999H
 push.l #9999999aH
 jsr _g
 add.l #08H,SP
;## # C_SRC : }
 rts

_main:
;## # C_SRC : f(1.1);
 push.l #3ff19999H
 push.l #9999999aH
 jsr _f
;## # C_SRC : g(1.1);
 push.l #3ff19999H
 push.l #9999999aH
 jsr _g
 add.l #010H,SP
;## # C_SRC : }
 rts

Figure 3.36 Example of Using –Osp_adjust

3-40

3.5.3 -fuse_DIV

This option changes generated code for division.

The compiler generates div.w (divu.w) and div.b (divu.b) microcomputer instructions for the following
divisions:

- The dividend is a 4-byte value, the divisor is a 2-byte value, and the result is a 2-byte value.

- The dividend is a 2-byte value, the divisor is a 1-byte value, and the result is a 1-byte value.

If the division results in an overflow when this option is specified, the compiler may operate differently
from stipulated in ANSI. If the division results in an overflow, For the div instruction of the M16C, the
result is unpredictable if an overflow occurs.

Therefore, when NC308 compiles the program in default settings, it calls a runtime library to correct
the result for this problem even in cases where the dividend is 4-byte, the divisor is 2-byte, and the
result is 2-byte.

Source program Default When using -fuse_DIV
int k,j;
long l;
k=l/j;

mov.w _j:16,R1
exts.w R1
push.l R3R1
mov.l _l:16,R2R0
glb __i4div
jsr.a __i4div
add.l #4H,SP
mov.w R0,_k:16

Output the code, considering an
overflow.

mov.l _l:16,R2R0
div.w _j:16
mov.w R0,_k:16

Use the div instruction.

Figure 3.37 Example of Using -fuse_DIV

3-41

3.5.4 -Wno_used_argument

When a function having arguments is defined, this option outputs a warning for unused arguments. By
correcting the source program based on the warning, you can save the memory space and speed up the
processing.

C source Warning message
int f(int a,int b,int c)
{
 return a+c;
}

C:¥Hew3¥test1¥test1¥test1.c(68) : [Warning(ccom)] function "f()" has no-used
argument(b).

Figure 3.38 Example of Executing -Wno_used_argument

3-42

3.5.5 -fsmall_array

When referencing a far-type array whose total size is unknown during compiling, this option calculates
subscripts in 16 bits, assuming that the array's total size is within 64 Kbytes. When referencing
elements of a far-type array of unknown size, the compiler calculates subscripts in 32 bits by default, so
that arrays of 64 Kbytes or longer can be handled. See the following example:

extern int array[]:

int i = array[j];

In this case, because the total size of the array is not known to the compiler, the subscript "j" is
calculated in 32 bits.

When this option is specified, the compiler assumes that the total size of the array is 64 Kbytes or less
and calculates the subscript "j" in 16 bits. This can increase the processing speed and reduce the amount
of code.

We recommend you use this option whenever the size of one array does not exceed 64 Kbytes.

Source program Without -fsmall_array With -fsmall_array
extern far int a[];
int i,j;
i=a[j];

 mov.w -2[FB],R0 ; j
 exts.w R0
 mov.l R2R0,A0
 shl.l #1,A0
 mov.w _a[A0],-2[FB] ; i

 indexws.w -4[FB] ; j
 mov.w:g_a,-2[FB] ; i

Figure 3.39 Example of Using –fsmall_array

3-43

3.5.6 -fdouble_32

This option causes the compiler to process the double type as the float type.

Notes:

1. When you specify this option, you must declare a function prototype. Without a
prototype declaration, the compiler may generate an invalid code.

2. When you specify this option, the debug information of the double type is processed as
the float type. Therefore, the double data is displayed as the float type on the C watch
window and global window of debugger PD308 and simulator PD308SIM.

C source Without -fdouble_32 With -fdouble_32

float data;
data=data+123.456;

 push.l _data:16
 .glb __f4tof8
 jsr.a __f4tof8
 add.l #04H,SP
 pushm R3,R2,R1,R0
 push.l #405edd2fH
 push.l #1a9fbe77H
 .glb __f8add
 jsr.a __f8add
 add.l #010H,SP
 pushm R3,R2,R1,R0
 .glb __f8tof4
 jsr.a __f8tof4
 add.l #08H,SP
 mov.l R2R0,_data:16

 push.l _data:16
 push.l #42f6e979H
 .glb __f4add
 jsr.a __f4add
 add.l #08H,SP
 mov.l R2R0 _data:16

Figure 3.40 Example of Using the –fdouble_32 Option

3-44

3.6 Other Pragma Functions and Options

3.6.1Other Pragma Functions

(1) Extended functions for memory mapping

Extended function Description

#pragma ROM Maps the specified variable to the rom section.

Syntax: #pragma ROMΔ variable-name

Example: #pragma ROM val

Note: This facility is provided to maintain compatibility with NC77 and
NC79. The variable normally must be located in the rom section using
the const qualifier.

#pragma SECTION Changes the section name generated by the compiler.

Syntax: #pragma
SECTIONΔexisting-section-nameΔnew-section-name

Example: #pragma SECTION bss nonval_data

(2) Extended functions for use with target devices

Extended function Description

#pragma ADDRESS

 (#pragma EQU)

Assigns a variable to the absolute address.

Syntax: #pragma ADDRESSΔvariable-nameΔabsolute-address

Example: #pragma ADDRESS port0 2H

#pragma
BITADDRESS

Assigns a variable to the bit position of the specified absolute
address.

Syntax: #pragma BITADDRESSΔvariable-nameΔbit-position,
absolute-address

Example: #pragma BITADDRESS io 1,100H

#pragma DMAC

Assigns a DMAC register for the external variable. (Only for
NC308WA)

Syntax: #pragma DMACΔvariable-nameΔDMAC-register-name

Example: #pragma DMAC dma0 DMA0

#pragma INTCALL

Declares the function to be called by software interrupt (int
instruction).

Switch [/c] generates the code for saving the required register when
calling the function.

Syntax 1:

#pragma INTCALLΔ[/C]Δ INT-numberΔassembler-function-name
(register-name)

Example 1:

3-45

Extended function Description

#pragma INTCALL 25 func(R0, R1)

#pragma INTCALL /C 25 func(R0, R1)

Syntax 2:

#pragma INTCALLΔ INT-numberΔC-function-name()

Example 2:

#pragma INTCALL 25 func()

#pragma INTCALL /C 25 func()

Note: You must declare the prototype of the function before entering
this declaration.

#pragma
INTERRUPT

(#pragma INTF)

Declares the interrupt processing function written in C. This
declaration causes the compiler to generate the code, at the entry
and exit points of the function, that performs a procedure for the
interrupt processing function.

Syntax:

#pragma INTERRUPTΔ[/B¦/E¦/F]Δinterrupt-processing-function-name

#pragma
INTERRUPTΔ[/B¦/E¦/F]Δinterrupt-vector-numberΔinterrupt-processing
-function-name

#pragma
INTERRUPTΔ[/B¦/E¦/F]Δinterrupt-processing-function-name(vect=inte
rrupt-vector-number)

Example:

#pragma INTERRUPT int_func

#pragma INTERRUPT /B int_func

#pragma INTERRUPT 10 int_func

#pragma INTERRUPT /E 10 int_func

#pragma INTERRUPT int_func (vect=10)

#pragma INTERRUPT /F int_func (vect=20)

Note: You can also use #pragma INTF for maintaining compatibility
with C77.

#pragma
PARAMETER

Declares that the parameters are passed via the specified registers
when calling an assembler function.

Switch [/C] generates the code for saving the required register when
calling the function.

Syntax:

#pragma PARAMETERΔ[/C]Δfunction-name(register-name)

Example:

#pragma PARAMETER asm_func(R0, R1)

#pragma PARAMETER /C asm_func(R0, R1)

3-46

Extended function Description

Note: You must declare the prototype of the function before entering
this declaration.

(3) Extended functions for MR308 support

Extended function Description

#pragma ALMHANDLER

Declares the name of the MR308 alarm handler.

Syntax: #pragma ALMHANDLERΔfunction-name

Example: #pragma ALMHANDLER alm_func

#pragma CYCHANDLER

Declares the name of the MR308 cyclic start handler.

Syntax: #pragma CYCHANDLERΔfunction-name

Example: #pragma CYCHANDLER cyc_func

#pragma INTHANDLER

#pragma HANDLER

Declares the name of the MR308 interrupt handler.

Syntax 1: #pragma INTHANDLERΔ[/E]Δfunction-name

Syntax 2: #pragma HANDLERΔ[/E]Δfunction-name

Example: #pragma INTHANDLER int_func

#pragma TASK

Declares the name of the MR308 task start function.

Syntax: #pragma TASKΔtask-start-function-name

Example: #pragma TASK task1

(4) Other extended functions

Extended function Description

#pragma ASM

#pragma ENDASM

Specifies the area in which coding is made in assembly
language.

Syntax: #pragmaΔASM

#pragmaΔENDASM

Example:

#pragma ASM

mov.w R0,R1

add.w R1,02H

#pragma ENDASM

#pragma JSRA

Calls a function by using JSR.A as the JSR instruction.

Syntax: #pragma JSRA Δfunction-name

Example: #pragma JSRA func

3-47

Extended function Description

#pragma JSRW Calls a function by using JSR.W as the JSR instruction.

Syntax: #pragma JSRWΔfunction-name

Example: #pragma JSRW func

#pragma PAGE Specifies a new-page point in the assembler listing file.

Syntax: #pragmaΔPAGE

Example: #pragma PAGE

#pragma __ASMMACRO Declares the function defined by the assembler macro.

Syntax: #pragma __ASMMACROΔfunction-name
(register-name)

Example: #pragma __ASMMACRO mul(R0,R2)

3-48

3.6.2Other Options

(1) Options for controlling the compile driver

Option Function

-c Creates a relocatable file (extension .r30), and ends
processing.

-D identifier Defines an identifier. This option has the same function as
#define.

-I directory-name Specifies the name of the directory that contains files to be
referenced by the #include preprocess command. You can
specify up to 16 directories.

-E Processes only the preprocess commands and outputs the
result to standard output.

-P Starts only the preprocess commands and creates a file
(extension .i).

-S Creates an assembly source file (extension .a30), and ends
processing.

-U predefined-macro-name Makes the predefined macro to undefined one.

-silent Suppresses the copyright message at startup.

-dsource Generates an assembly source file (extension ".a30") with a C
source list output as a comment. (This file is not deleted even
after assembling.)

-dsource_in_list Generates an assembly language list file (extension .lst), in
addition to performing the "-dsource" function.

(2) Options for specifying output files

Option Function

- o file-name

Specifies the name of a file (absolute module file, map file, and
so on) generated by ln308. You can also specify a pathname
including a directory name. Do not specify file name
extensions.

-dir directory-name Specifies the directory to which files (absolute module file, map
file, and so on) generated by ln308 are output.

3-49

(3)Options for displaying version information and command line

Option Function

-v Displays the name of the command program being executed and the
command line.

-V Displays the startup messages of the compiler programs, then ends
processing (without compiling anything).

(4) Options for debugging

Option Function

-g Outputs debug information to an assembly source file
(extension .a30). This enables C-language level debugging.

-genter

Always outputs an enter instruction during function call. You must
specify this option when using the debugger's stack trace function.

-gno_reg Suppresses the output of debug information for register variables.

(5) Optimization options

Option Function

-Oconst Performs optimization by replacing references to
const-modified variables with constants.

-Ono_bit Suppresses optimization based on grouping of bit
manipulations.

-Ono_break_source_debug Suppresses optimization that affects source line information.

-Ono_float_const_fold Suppresses constant folding processing of floating-point
numbers.

-Ono_stdlib Suppresses inline padding of standard library functions and
modification of library functions.

-Ono_logical_or_combine Suppresses optimization that puts consecutive ORs together.

-Ono_asmopt Suppresses optimization by the assembler optimizer "aopt30."

-Ocompare_byte_to_word Compares consecutive bytes of data at contiguous addresses
in words.

-Oforward_function_to_inline Performs inline expansion for all the inline functions.

-Oglb_jmp Optimizes external references to jump instructions.

(6)Options for modifying generated codes

Option Function

-fansi Validates -fnot_reserve_far_and_near,
-fnot_reserve_asm, -fnot_reserve_inline, and
-fextend_to_int.

3-50

Option Function

-fnot_reserve_asm Exclude asm from reserved words (only "_asm" is
valid).

-fnot_reserve_far_and_near Exclude far and near from reserved words (only
"_far" and "_near" are valid).

-fnot_reserve_inline Exclude inline from reserved words (only "_inline"
will be a reserved word).

-fextend_to_int Performs operation after extending char-type data to
int-type (use the expansion conforming to the ANSI
standards.)

-fchar_enumerator Handles the enumerator type as the unsigned
char-type, not as the int-type.

-fno_even Allocates all output data to the odd attribute section
without separating odd data from even data.

-ffar_RAM Changes the default attribute of RAM data to "far."

-fnear_ROM Changes the default attribute of ROM data to "near."

-fnear_pointer Changes the default attribute of the pointers and
addresses to "near."

-fconst_not_ROM Does not handle the types specified by const as
ROM data.

-fnot_address_volatile Does not regard the variables specified by #pragma
ADDRESS (#pragma EQU) as variables specified by
volatile.

-fenable_register Validates the register storage class.

-finfo Outputs the information required for the Inspector,
Stk Viewer, Map Viewer, and utl30.

-M82 Generates the code for the M32C/80 Series.

-fswitch_other_section Outputs a table jump for the switch statement to a
section other than the program section.

-ferase_static_function=function-name Does not generate any code if the function specified
in this option is a static function.

-fno_switch_table Generates the code that branches after making
comparison for the switch statement.

-fmake_vector_table Automatically generates a variable vector table.

-fmake_special_table Automatically generates a special page vector table.

(7)Library specification option

Option Function

-l library-file-name Specifies the library to be used during linking.

3-51

(8) Warning options

Option Function

-Wnon_prototype Outputs a warning if a function without prototype declaration is
used.

-Wunknown_pragma Outputs a warning if unsupported #pragma is used.

-Wno_stop Does not stop the compilation even if an error occurs.

-Wstdout Outputs an error messages to standard output (stdout) of the
host machine.

-Werror_file<fileame> Outputs tag files.

-Wstop_at_warning Stops compiling if a warning occurs during compiling.

-Wnesting_comment Outputs a warning for a comment including "/*."

-Wccom_max_warnings

=warning-count

Allows you to specify the maximum number of times ccom308
can output a warning.

-Wall Displays all detectable warnings (however, not including
warnings output by "-Wlarge_to_small" and
"-Wno_used_argument").

-Wmake_tagfile Outputs a tag file for each file if an error and warning occurs.

-Wuninitialize_variable Outputs a warning for auto variable that have not been
initialized.

-Wlarge_to_small Outputs a warning for implicit assignment of variables in
descending sequence of size.

-Wno_warning_stdlib This option specified with "-Wnon_prototype" or "-Wall" inhibits
the "warning for standard libraries that do not have prototype
declaration."

-Wno_used_static_function Displays the static function name that does not require code
generation.

-Wundefined_macro Displays a warning if an undefined macro is used in #if.

-Wstop_at_link Suppress the generation of an absolute module file if a warning
occurs during linking.

(9) Assembly and link options

Option Function

-as308Δ<option> Specifies the options for the as308 assemble command. To
pass two or more options, enclose them in double quotes (").

-ln308Δ<option> Specifies the options for the ln308 link command. To pass
two or more options, enclose them in double quotes (").

3-52

3.7Sections

3.7.1Sections Managed by NC308

NC308 manages the data and code mapping areas as sections.

This subsection describes the types of sections managed by NC308, and how to manage them.

(1) Structure of sections

NC308 manages data according to the type as individual sections. Table 3.6 shows the structure of
sections that NC308 manages.

Table 3.6 Structure of Sections for NC308

Section base name Contents

data Stores static variables with initial values.

bss Stores static variables without initial values.

rom Stores character strings and constants.

program Stores programs.

program_s Stores programs specified in #pragma SPECIAL.

vector Variable vector area (The compiler does not generate this area.)

fvector Fixed vector area (The compiler does not generate this area.)

stack Stack area (The compiler does not generate this area.)

heap Heap area (The compiler does not generate this area.)

3-53

Figure 3.41 Mapping Sections according to Type of Data

(2) Section attributes

The sections generated by NC308 are further classified according to their attributes, including whether
they have initial values, which area they are mapped to, and their data size.

Table 3.7 shows the symbols indicating the attributes.

Table 3.7 Section Attributes

Attribute Contents Applicable section
base name

I Section containing initial values of data data

N: "near" attribute (area from 000000H to 00FFFFH)

F: "far" attribute (area from 000000 to FFFFFFH)

data, bss, rom N/F/S

S: SBDATA attribute (area available for SB relative
addressing)

data, bss

E/O E: Data size is an even number.

O: Data size i an odd number.

data, bss, rom

(3) Naming rules of sections

The names of sections generated by NC308 are determined using the section base names and attributes.

Figure 3.42 shows the combination of the section base name and attribute.

data section

bss section

stack section
(Not generated by the

compiler)

program section

program_S section

rom section

data_l section

void func(void);

#pragma SPECIAL 20

func()

int i = 1 ;

char c = '0' ;

int i, k ;

const char cc = 'a' ;

void main(void)

{

int l , m ;

i = i + k ;

func();

}

void func(void)

{

}

RAM

ROM

Static variable
with initial

values
Static variable
without initial

values

Auto variable

Program

Program specified
in #pragma
SPECIAL

Strings and

constants

Initial values

3-54

Figure 3.42 Section Name Naming Rules

Section base name

data bss rom program

Attribute Meaning

N "near" attribute

F "far" attribute

S SBDATA attribute

E Even data size

O odd data size

I With initial values

Section name = Section base name_Attribute

3-55

3.8 Issues Related to Cross-Software

3.8.1 Issues Related to Assembly Language Programs

Almost any kind of program can be written in C. However, you use the assembly language when you
want to improve performance or use special instructions. This section reviews the issues you must keep
in mind when linking C programs to assembly language programs.

(1) Calling assembler functions from C programs

(a) Assembler function without parameters

When calling assembler functions from C programs, use the name of the assembler functions the same
way for calling functions written in C.

The first label name in an assembler function must be preceded by an underscore (_). To call the
assembler function from the C program, use the first label name without the underscore. The calling C
program must include a prototype declaration of the assembler function.

Figure 3.43 shows an example of calling the assembler function asm_func.

Figure 3.43 Example of Calling the Assembler Function without Parameters (smp1.c)

Figure 3.44 Compiled Results of smp1.c (Excerpt) (smp1.a30)

extern void asm_func(void); ← Prototype declaration of the assembler function

void main()

{

:

(Omitted)

:

asm_func(); ← Calling the assembler function

}

.glb _main

_main:

:

(Omitted)

:

jsr _asm_func ← Calling the assembler function (preceded by "_")

rts

3-56

(b) Passing parameters to assembler functions

When passing parameters to assembler functions, use the extended function #pragma PARAMETER.

#pragma PARAMETER passes parameters to the assembler functions via 32-bit general-purpose
registers (R2R0, R3R1), 16-bit general-purpose registers (R0, R1, R2, R3), 8-bit general-purpose
registers (R0L, R0H, R1L, R1H), and address registers (A0, A1).

The following shows the procedure for calling an assembler function using #pragma PARAMETER:

① Enter a prototype declaration of the assembler function before the #pragma PARAMETER
declaration.

You must also declare the parameter types.

② For #pragma PARAMETER, declare the name of the registers to be used in the parameter
list of the assembler function.

Figure 3.45 shows an example using #pragma PARAMETER to call the assembler function asm_func.

Figure 3.45 Example of Calling the Assembler Function with Parameters (smp2.c)

extern unsigned int asm_func(unsigned int, unsigned int);

#pragma PARAMETER asm_func(R0, R1) ← Pass the parameters to the assembler function

via R0 and R1 registers.

void main()

{

int i = 0x02;

int j = 0x05;

asm_func(i, j); ← Calling the assembler function

}

3-57

Figure 3.46 Compiled Results of smp2.c (Excerpt) (smp2.a30)

(c) Limits on parameters in the #pragma PARAMETER declaration

You cannot declare the following parameter types in a #pragma PARAMETER declaration:

• Parameters of structure type and union type

• 64-bit integer type (long long) parameters

• Double precision floating-point type (double) parameters

You cannot define return values of the structure or union type for assembler functions.

(2) Coding assembler functions

(a) Coding the assembler function to be called

The following describes the procedure for coding the entry processing of an assembler function:

① Use the assembler pseudo instruction .SECTION to specify the section name.

② Use the assembler pseudo instruction .GLB to specify the function name label as global.

③ Add an underscore (_) to the function name to write it as a label.

④ If you want to modify the B or U flag, save the flag register into the stack.

⑤ Save the registers that may be destroyed within the function.

The following describes the procedure for coding the exit processing of an assembler function:

.glb _main

_main:

enter #04H

pushm R1

._line6

;## # C_SRC : int i = 0x02;

mov.w #0002H,-4[FB] ; i

._line7

;## # C_SRC : int j = 0x05;

mov.w #0005H,-2[FB] ; j

._line9

;## # C_SRC : asm_func(i, j);

mov.w -2[FB],R1 ; j ← Pass the parameters to the assembler function

mov.w -4[FB],R0 ; i via R0 and R1 registers.

jsr _asm_func ← Calling the assembler function (preceded by "_")

._line10

;## # C_SRC : }

popm R1

exitd

3-58

⑥ Restore the registers that have been saved during entry processing of the function.

⑦ If you modified the B and U flags within the function, restore the flag register from the
stack.

⑧ Code the RTS instruction.

Do not change the contents of the SB and FB registers within the assembler function.

If you change the contents of the SB and FB registers, save them in the stack at the entry to the function,
and then restore them from the stack at the exit of the function.

Figure 3.47 shows an example of coding the assembler function. In this example, the section name is
"program", which is the same as the section name output by the compiler.

Figure 3.47 Example Coding of an Assembler Function

(b) Returning values from an assembler function

Values of the integer, pointer, and floating-point types can be returned from an assembler function to a
C program via registers. Table 3.8 shows the calling rules for return values. Figure 3.48 shows a coding
example of an assembler function to return a value.

Table 3.8 Calling Rules for Return Values

Return value type Rule

_Bool type

chartype

R0L register

int type

near pointer type

R0 register

float type

long type

When the value is returned, the 16 low-order bits are stored in the
R0 register and the 16 high-order bits are stored in the R2 register.

double type

long double type

When the value is returned, it is stored in 16 bits each, beginning
with the MSB, in order of registers R3, R2, R1, and R0.

long long type When the value is returned, it is stored in 16 bits each, beginning
with the MSB, in order of registers R3, R1, R2, and R0.

.SECTION program ←

.GLB _asm_func ←

_asm_func: ←

PUSHC FLG ←

PUSHM R3,R1 ←

MOV.L SYM1, R3R1

POPM R3,R1 ←

POPC FLG ←

RTS ←

.END

* to correspond to the steps descried above.

3-59

Return value type Rule

structure type

union type

Immediately before calling the function, the "far" address indicating
the area for storing the return value is pushed to the stack. Before
the return to the calling program, the called function writes the
return value to the area indicated by the "far" address pushed to the
stack.

Figure 3.48 Example of Coding Assembler Function to Return long-type Return Value

(c) Referencing C variables

Since assembler functions are written in different files from the C program, only the C global variables
can be referenced.

To include the names of C variables in an assembler function, precede them with an underscore (_).
You also need to use the assembler pseudo instruction .GLB to declare variables for external reference
in the assembly language program.

Figure 3.49 shows an example of referencing the C program global variable "counter" from the
assembler function asm_func.

.SECTION program

.GLB _asm_func

_asm_func:

(Omitted)

MOV.I #01A000H, R2R0

RTS

.END

3-60

Figure 3.49 Referencing a C Global Variable

(d) Notes on specifying interrupt processing in assembler functions

The following must be performed at the entry and exit points of a program (function) for interrupt
processing:

1. Save the registers (R0, R1, R2, R3, A0, A1, and FB) at the entry point.

2. Restore the registers (R0, R1, R2, R3, A0, A1, and FB) at the exit point.

3. Use the REIT instruction to return from the function.

Figure 3.50 shows an example coding of an assembler function for interrupt processing.

Figure 3.50 Example Coding of an Interrupt Processing Assembler Function

[C program]

unsigned int counter; ←C program global variable

main()

{

:

(omitted)

:

}

[Assembler function]

.GLB _counter ← Declare the C program global variable for external reference

asm_func:

:

(omitted)

:

MOV.W _counter, R0 ← Reference

.section program

.glb _func

_func:

pushm R0,R1,R2,R3,A0,A1,FB ← Save all the registers.

MOV.B #01H, R0L

:

(Omitted)

:

popm R0,R1,R2,R3,A0,A1,FB ← Restore all the registers.

reit ← Return to the C program.

.END

3-61

(e) Notes on calling C functions from the assembler

Not the following when calling functions written in C from an assembly language program:

① To call a C function, use a label name preceded by an underscore (_) or a dollar ($).

② For NC308, the R0 register and registers used for return values are not saved during entry
processing of the function. You must save these registers before calling the C function from
the assembler.

For NC30, C functions do not save or restore registers. Before calling a C function, save the registers
used in the assembler function. Restore them after returning from the C function.

(3) Notes on coding assembler functions

Note the following when coding assembly language functions (subroutines) that are called from a C
program.

(a) Notes on handling the B and U flags

When returning from an assembler function to a C program, resume the B and U flags to the same
condition as they were when the function was called.

(b) Notes on handling the FB register

If you modified the value of a FB (frame base register) in an assembler function, you cannot return to
the calling C program normally. Therefore, do not modify the FB value in the assembler functions. If
you need to change the FB register due to system design, save it at the start of the function and restore
it when returning to the function from which it was called.

(c) Notes on handling the general-purpose registers and address registers

When modifying the contents of the general-purpose registers (R1, R2, and R3, except for R0) and
address registers (A0, A1) in an assembler function, you must save them at the entry processing of the
assembler function and restore them at the exit processing.

However, if the assembler function is declared using #pragma PARAMETER /C, the codes for saving
and restoring the registers are generated in the calling program. Therefore, it is unnecessary to save and
restore the registers in the assembler function. (The amount of code becomes somewhat larger.)

(d) Notes on passing parameters to an assembler function

If you want to pass parameters to a function written in assembly language, use the #pragma
PARAMETER function to pass these parameters via registers. Figure 3.51 shows the format
("asm_func" is the name of the assembler function).

Figure 3.51 Coding Example of an Assembler Function

#pragma PARAMETER passes parameters to assembler functions via the 16-bit general-purpose
registers (R0, R1, R2, R3), 8-bit general-purpose registers (R0L, R0H, R1L, R1H) and address registers
(A0, A1). In addition, the 16-bit general-purpose registers are combined with the address registers to
form 32-bit registers (R3R1, R2R0, A1A0) through which parameters are passed to the assembler
functions.

You must enter the prototype declaration of the assembler function before the #pragma PARAMETER

unsigned int near asm_func(unsigned int, unsigned int);

↑Prototype declaration of the assembler function

#pragma PARAMETER asm_func(R0, R1)

3-62

declaration.

However, you cannot declare the following parameter types in the #pragma PARAMETER declaration:

• Parameters of structure type and union type

• 64-bit integer type (long long) parameters

• Double precision floating-point type (double) parameters

You cannot define return values of the structure or union type for assembler functions.

3-63

3.9 long long Type

The compiler supports long long and unsigned long long types data.

This data type is represented as "long long" for signed integer, and "unsigned long long" for unsigned
integers.

To create a long long type integer constant, append the suffix LL after the integer value. To create an
unsigned long long type integer constant, append the suffix ULL after the integer value.

Table 3.9 Integer Types and Range of Values

Type Range of values Data size

char 0 to 255 1 byte

signed char -128 to 127 1 byte

unsigned char 0 to 255 1 byte

short -32768 to 32767 2 bytes

unsigned short 0 to 65535 2 bytes

int -32768 to 32767 2 bytes

unsigned int 0 to 65535 2 bytes

long -2147483648 to 2147483647 4 bytes

unsigned long 0 to 4294967295 4 bytes

long long -9223372036854775808 to 9223372036754775807 8 bytes

unsigned long long 0 to 18446744073709551615 8 bytes

3-64

3.10 "near/far" Type

The maximum access area for the M16C/80 Series is 16M bytes. NC308 manages this area divided into
a near area (from 000000H to 00FFFFH) and a far area (from 000000H to FFFFFFH). This subsection
describes how to map variables and functions to these areas and how to access these areas.

3.10.1 Near and Far Areas

To manage the access area of a maximum of 16M bytes, NC308 divides this area into near and far areas.
Table 3.10 shows the characteristics of these areas.

Table 3.10 Near and Far Areas

Area Description

Near area This area helps the M16C/80 Series access data efficiently.

This 64-Kbyte area extends over absolute addresses from 000000H to
00FFFFH. Stacks and internal RAM are mapped to this area.

Far area Full memory space accessible from the M16C/80 Series. This 16-Mbyte
area extends over absolute addresses from 000000H to FFFFFFH.

Internal ROM is mapped to this area.

3.10.2 Defaults of the "near" and "far" Attributes

For NC308, variables and functions mapped to the near area have the "near" attribute and those mapped
to the far area have the "far" attribute. Table 3.11 shows the default attributes of the variables and
functions.

Table 3.11 Defaults of the "near" and "far" Attributes

Category Attribute

Program Fixed to "far"

RAM data near (However, the pointer types has the "far" attribute.)

ROM data "far"

Stack data Fixed to "near"

To change the defaults of near and far attributes, specify the following options when starting NC308:

-ffar_RAM (-fFRAM): Change the default attribute for the RAM data to "far".

-fnear_ROM (-fNROM): Change the default attribute for the ROM data to "near".

-fnear_pointer (-fNP): Change the default attribute for the pointer type data to "near".

3.10.3 "near" and "far" Specification for Functions

Due to the architecture of the M16C/80 Series, the attribute for NC308 functions is fixed to the far area.
If you specify "near", NC308 outputs a warning during compiling and forcibly maps the functions to
the far area.

3-65

3.10.4 "near" and "far" Specification for Variables

[storage-class] type-specifier near / far variable-name;

If you do not specify "near" or "far" in the type declaration, RAM data will be mapped to the near area.
Data with const modifier and ROM data will be mapped to the far area.

Figure 3.52 Static Variable's near/far

static int data ;

static int near n_data ;

static int far f_data ;

static const int c_data = 0x1234 ;

near area

far area

data

n_data

f_data

c_data 0x1234

3-66

The specification of "near" or "far" does not affect the mapping of auto variable because they are all
mapped to the stack area.)

Figure 3.53 Auto Variable's near/far

void func(void)

{

int near i_near ;

int far i_far ;

int near *addr_near ;

int *addr_far ;

...

}

i_near

i_far

addr_near

addr_far

Stack area Whether the stack area is mapped to the

near or far area depends on the system.

3-67

3.10.5 "near" and "far" Specification for Pointers

Specify "near" or "far" for a pointer to specify the size of the address to be stored in the pointer and the
area to which the pointer is mapped.

(1) Specifying the size of the address to be stored in the pointer

If you do not specify anything, the pointer is handled as a 32-bit (4-byte) pointer variable pointing to
the variable in the far area.

near: The size of the address to be stored in the pointer variable is 16 bits.

far: The size of the address to be stored in the pointer variable is 32 bits.

Figure 3.54 Specifying the Address Size Stored in the Pointer

[storage-class] type-specifier near / far * variable-name;

int near *near_data ;

int far *far_data ;

・

・

near_data

far_data

*near_data

*far_data

near area

far area

3-68

(2) Specifying the area to which the pointer is mapped

If you do not specify anything, the pointer variable to mapped to the near area.

near: Map the area for the pointer variable to the near area.

far: Map the area for the pointer variable to the far area.

Figure 3.55 Specifying the Pointer Mapping Area

[storage-class] type-specifier * near/far variable- name;

.

.

*near_data

near_data

*far_data

far_data

near area

far area

int *near near_data ;

int *far far_data ;

3-69

3.10.6 Difference in Pointer's "near/far" Specification between NC308 and NC30

For the NC30 C compiler for the M16C/60 and M16C/20 Series, the "near" attribute is assumed for all
pointers if "near" or "far" is not specified. For NC308, if nothing is specified for the size of the address
to be stored in the pointer, the size of the pointer variable is assumed to be 32 bits (4-bytes). The
pointer is then handled as a pointer variable pointing to the variable in the far area.

3.10.7 Assigning Variable Address in the Far Area to the "near" Pointer

If an attempt is made to assign a variable address in the far area to the "near" pointer, NC308 outputs a
warning message, indicating that the pointer will be assigned, ignoring higher-order part of the address.

NC308 also outputs a warning message indicating that the "far" pointer is explicitly or implicitly
converted to the "near" pointer.

Figure 3.56 Assigning a Variable Address in the far Area to the near Pointer

void func(int near *);

int near i_near;

int far i_far;

int *addr_far;

int near *addr_near;

void main(void)

{

addr_near= &i_far;

addr_far = &i_far;

addr_far = &i_near;

addr_near = addr_far;

addr_near = (near *)addr_far;

func(addr_far);

}

void func(int near *ptr)

{

}

A function that receives the "near" pointer as a parameter.

Provide a pointer variable for the far area.

Provide a pointer variable for the near area.

A warning occurs!

Assign the pointer, ignoring the higher-order address.

A warning occurs!

The "far" pointer is implicitly converted to the "near"

pointer.

A warning occurs!

Assign the pointer, ignoring the higher-order address.

A warning occurs!

The "far" pointer is explicitly converted to the "near"

pointer.

3-70

3.11 Inline Expansion

You can specify an inline storage class the way as you would for C++. By specifying the inline storage
class for functions, you can perform inline expansion for the functions.

3.11.1Overview of the Inline Storage Class

The inline storage class specifier declares that the function is subject to inline expansion. For the
functions specified for the inline storage class, the code is directly embedded at the assembly language
level.

3.11.2Format of an Inline Storage Class Declaration

In a declaration, enter an inline storage class specifier using the same syntax as for the static, extern
type storage class specifier. Figure 3.57 shows the declaration format.

Figure 3.57 Declaration of an inline Storage Class

Figure 3.58 shows an example of a function declaration. Figure 3.59 shows the compiled result.

Figure 3.58 Sample Program for the Inline Function

inlineΔtype-specifierΔfunction;

inline int func(int i) ← Declaration and definition part of the inline function

{

return i++;

}

void main()

{

int s;

s = func(s); ← Calling part of the inline function

}

3-71

Figure 3.59 Compiled Results of the Sample Program

._LANG 'C','X.XX.XX','REV.X'
;## NC308 C Compiler OUTPUT
;## ccom308 Version X.XX.XX
;## COPYRIGHT(C) XXXX(XXXX-XXXX) RENESAS TECHNOLOGY CORPORATION
;## ALL RIGHTS RESERVED AND RENESAS SOLUTIONS CORPORATION ALL RIGHTS
RESERVED
;## Compile Start Time Thu April 10 18:40:11 1995,1996,1997,1998,1999,
2000,2001,2002,2003
;## COMMAND_LINE: ccom308 D:¥MTOOL¥nc308wa5¥TMP¥sss.i -o .¥smp.a30
d S
;## Normal Optimize O F F
;## ROM size Optimize O F F
;## Speed Optimize O F F
;## Default ROM is f a r
;## Default RAM is near

.GLB __SB__

.SB __SB__

.FB 0
;## # FUNCTION func
;## # FUNCTION main
;## # FRAME AUTO (s) size 2, offset -4
;## # FRAME AUTO (i) size 2, offset -2
;## # ARG Size(0) Auto Size(4) Context Size(8)

.SECTION program,CODE,ALIGN

._file 'smp.c'

.align

._line 7
;## # C_SRC : {

.glb _main
_main:

enter #04H
pushm R1
._line 9

;## # C_SRC : s = func(s);
mov.w -4[FB],R0 ; s
._line 2

;## # C_SRC : {
mov.w R0,-2[FB] ; i
._line 3

;## # C_SRC : return i++; ← The inline function is embedded.
mov.w R0,R1
add.w #0001H,R0

._line 9
;## # C_SRC : s = func(s);

mov.w R1,-4[FB] ; s
._line 10

;## # C_SRC : }
popm R1
exitd

E1:
.END

;## Compile End Time Tue Jul 16 13:12:00 20xx

3-72

3.11.3 Rules for the Inline Storage Class

Note the following when specifying the inline storage class:

• About inline function parameters

You cannot use the structure or union types for parameters of the inline functions.

If you use these types, a compile error occurs.

• About the indirect call of inline functions

You cannot perform the indirect call of an inline function. A specification of a indirect call causes a
compile error.

• About the recursive call of inline functions

You cannot the recursive call of an inline function. A specification of a recursive call causes a
compile error.

• About the definition of an inline function

When you specify the inline storage class for a function, you must define the body of the function
in addition to the declaration. This body definition must be included in the same file as the
functions.

Figure 3.60 shows a coding that the compiler handles as an error.

Figure 3.60 Example of Inappropriate Coding of Inline Function (1)

inline void func(int i);

void main(void)

{

func(1);

}

[Error message]

[Error(ccom):smp.c,line 5] inline function's body is not declared previously

===> func(1);

Sorry, compilation terminated because of these errors in main().

3-73

If you used a function as an ordinary one and then define it as an inline function, the inline
specification is disabled and all functions are handled as static functions. In this case, the compiler
outputs a warning.

Figure 3.61 Example of Inappropriate Coding of Inline Function (2)

• About the address of an inline function

Since the inline function itself does not have an address, using the & operator for the inline function
causes an error.

Figure 3.62 Example of Inappropriate Coding of Inline Function (3)

int func(int i);

void main(void){

func(1);

}

inline int func(int i){

return i;

}

[Warning message]

[Warning(ccom):smp.c,line 9] inline function is called as normal function before

,change to static function

inline int func(int i)

{

return i;

}

main()

{

int (*f)(int);

f = &func;

}

[Error message]

[Error(ccom):smp.c,line 10] can't get inline function's address by '&' operator

===> f = &func;

Sorry, compilation terminated because of these errors in main().

3-74

• Declaration of static data

If static data is declared in an inline function, the body of the declared static data is allocated in
units of files. For this reason, if the inline function extends over two or more files, different areas
are to be accessed.

The static data to be used in the inline function must be declared outside the function. The compiler
outputs a warning if a static declaration is found in the inline function. We do not recommend a
static declaration in the inline function.

Figure 3.63 Example of Inappropriate Coding of Inline Function (4)

• Debug information

The compiler does not output C-language level debug information for inline functions.

This means that the inline functions are debugged at the assembly language level.

inline int func(int j)

{

static int i = 0;

i++;

return i + j;

}

[Warming message]

[Warning(ccom):smp.c,line 3] static valuable in inline function

===> static int i = 0;

4-1

Section 4. Using the High-performance Embedded

Workshop

4.1 Specifying Options in the High-performance Embedded Workshop

You can specify options from the Options menu. The following shows how to specify options from
Renesas Integrated Development Environment. Select "Renesas M32C Standard Toolchain" from the
Options menu.

Figure 4.1 High-performance Embedded Workshop Options Menu

4-2

4.1.1 C Compiler Options

Select the [C] tab in the [Renesas M32C Standard Toolchain] dialog box.

− Category:[Source]

Table 4.1 Correspondence between Items on the Category:[Source] Dialog Box and Compiler
Options

Dialog Box Option

Show entries for :

 Include files directories

 Defines

 Predefines

I<directory name>

D<sub>

 <sub> : <macro name> [= <string>]

U<sub>

 <sub> : <predefined macro name>

Figure 4.2 Category:[Source] Dialog Box

4-3

− Category:[Object]

Table 4.2 Correspondence between Items on the Category:[Object] Dialog Box and Compiler
Options

Dialog Box Option

Output file type :

[-c] Relocatable file (*.r30)

[-S] Assembly language source file (*.a30)

[-P] Preprocessed source file (*.i)

[-E] Preprocessed output

c

S

P

E

Debug options :

 [-finfo] Outputs information needed for Inspector, Stk Viewer, and
utl30

 [-g] Outputs debugging information. Therefore you can perform
C-language-level debugging

 [-genter] Always outputs an enter instruction when calling a function.
Be sure to specify this option when using the debugger's stack trace
function

 [-gno_reg] Suppresses the output of debugging information for
register variables

finfo

g

genter

gno_reg

[-dir] Specifies the directory to output the file(s) to : dir<directory name>

4-4

Figure 4.3 Category:[Object] Dialog Box

− Category:[List]

Table 4.3 Correspondence between Items on the Category:[List] Dialog Box and Compiler
Options

Dialog Box Option Shortcut

[-dS] Outputs C source code as comments in the output
assembly language source list.

dsource dS

[-dSL] Outputs C source code as comments in the output
assemble list.

dsource_in_list dSL

4-5

Figure 4.4 Category:[List] Dialog Box

− Category:[Optimize]

Table 4.4 Correspondence between Items on the Category:[Optimize] Dialog Box and Compiler
Options

Dialog Box Option Shortcut

Optimization level :

 [-O1] Makes –O3,-ONB,-ONBSD,-ONFCF,and

 –ONS valid

 [-O2] Makes no difference with –O1

 [-O3] Optimizes speed and ROM size to the maximum

 [-O4] Makes –O3 and Oconst valid

 [-O5] Effect the best possible optimization

O1

O2

O3

O4

O5

None

None

None

None

None

Size or speed :

 [-OR] ROM size followed by speed

 [-OS] Speed followed by ROM size

OR

OS

None

None

4-6

Dialog Box Option Shortcut

Miscellaneous options :

 [-OC] Performs optimization by replacing references
to theconst-qualified external variables with constants

Oconst

OC

 [-OCBTW] Compares consecutive bytes of data at
contiguous addresses in words

Ocompare_byte_to
_word

OCBTW

 [-OFFTI] In line deployment is performed to the
function described ahead.

Oforward_function_
to_inline

OFFTI

 [-OFTI] A floating point runtime library function is
developed.

Ofloat_to_inline OFTI

 [-OGJ] Optimizes the branch instruction which refers
to the global label.

Oglb_jmp OGJ

 [-ONA] Suppresses execution of assembler optimizer
aopt308

Ono_asmopt ONA

 [-ONB] Suppresses optimization based on grouping of
bit manipulations

Ono_bit ONB

 [-ONBSD] Suppresses optimization that affects
source line information

Ono_break_source
_debug

ONBSD

 [-ONFCF] Suppresses the constant folding processing
of floating point numbers

Ono_float_const_fo
ld

ONFCF

 [-ONLOC] Suppresses the optimization that puts
consecutive ORs together

Ono_logical_or_co
mbine

ONLOC

 [-ONS] Inhibits inline padding of standard library
functions and modification of library functions

Ono_stdlib ONS

 [-OSA] Performs optimization to remove stack
correction code after calling a function

Osp_adjust OSA

 [-OSTI] A static function is treated as an inline function Ostatic_to_inline OSTI

[-OLU] Expands sentences the number of times to loop
without loop :

Oloop_unroll=<num
eric value>

OLU

4-7

Figure 4.5 Category:[Optimize] Dialog Box

− Category:[Code Modification]

Table 4.5 Correspondence between Items on the Category:[Code Modification] Dialog Box and
Compiler Options

Dialog Box Option Shortcut

Miscellaneous options :

 [-fansi] Makes –fNRA,-fNRFAN,-fNRI,and –fETI valid

fansi

None

 [-fCE] Handles the enumerator type as an unsigned
char, not as an int type

fchar_enumerator fCE

 [-fCNR] Does not handle the types specified by const
as ROM data

fconst_not_ROM fCNR

 [-fD32] Handles the double type as the float type fdouble_32 fD32

 [-fER] Make register storage class available fenable_register fER

 [-fETI] Performs operation after extending char-type
data to the int type.

fextend_to_int fETI

4-8

Dialog Box Option Shortcut

(Extended according to ANSI standards.)

 [-fFRAM] Changes the default attribute of RAM data to
far

ffar_RAM

fFRAM

 [-fJSRW] Changes the default instruction for calling
functions to JRSW

fJSRW None

 [-fMST] Generates special page vector table. fmake_special_ta
ble

fMST

 [-fMVT] Generates variable vector table. fmake_vector_tab
le

fMVT

 [-fNA] Does not align the starting address of functions fno_align fNA

 [-fNAV] Does not regard the variables specified by
#pragma ADDRESS as those specified by volatile

fnot_address_vol
atile

fNAV

 [-fNE] Allocate all data to the odd section, with no
separating odd data from even data when outputting

fno_even fNE

 [-fNP] Changes the default type of pointer data to near. fnear_pointer fNP

 [-fNRA] Exclude asm from reserved words. fnot_reserve_asm fNRA

(Only _asm is valid.)

 [-fNRFAN] Exclude far and near from reserved words.

fnot_reserve_far_
and_near

fNRFAN

(Only _far and _near are valid.)

 [-fNRI] Exclude inline a reserved words.

fnot_reserve_inlin
e

fNRI

(Only _inline is valid.)

 [-fNROM] changes the default attribute of ROM data to
near

fnear_ROM

fNROM

 [-fNST] To a switch sentence, it always compares and
branched code is generated.

fno_switch_table fNST

 [-fSA] When referencing a far-type array, this option
calculates subscripts in 16 bits if the total size of the
array is within 64K bytes

fsmall_array fSA

 [-fSOS] Outputs the from ROM table corresponding to
the section differing from the program section

fswitch_other_sec
tion

fSOS

 [-fUD] Ignores an overflow when using a divide
operation.

fuse_DIV fUD

[-fESF] If the function specified is a static function, no
codes are generated.

ferase_static_func
tion=<function
name>

fESF=<func
tion name>

4-9

Figure 4.6 Category:[Code Modification] Dialog Box

4-10

− Category:[Warning]

Table 4.6 Correspondence between Items on the Category:[Warning] Dialog Box and Compiler
Options

Dialog Box Option Shortcut

Miscellaneous options :

 [-Wall] Become effective all options for
warning

Wall

None

 [-WLTS] Outputs an alarm for implicit transfers
from large size to smaller size

Wlarge_to_small WLTS

 [-WMT] Outputs error messages to every file Wmake_tagfile WMT

 [-WNC] Outputs a warning for a comment
including /*

Wnesting_comment WNC

 [-WNP] Outputs warning messages for
functions without prototype declarations

Wnon_prototype WNP

 [-WNS] Prevents the compiler stopping when
an error occurs

Wno_stop WNS

 [-WNUA] Outputs a warning to a function
having an unused argument

Wno_used_argument WNUA

 [-WNUF] Outputs a warning for the unused
function names.

Wno_used_function WNUF

 [-WNUSF] A static function name is output that
does not require code generation

Wno_used_static_func
tion

WNUSF

 [-WNWS] Suppresses the warning for missing
include file using standard library

Wno_warning_stdlib WNWS

 [-WSAL] Link processing is stopped when
warning occurs at the time of a link.

Wstop_at_link WSAL

 [-WSAW] Stops the compiling process when a
warning occurs

Wstop_at_warning WSAW

 [-Wstdout] Outputs error messages to the host
machine's standard output (stdout)

Wstdout None

 [-WUM] Output the warning for undefined
macro in #if .

Wundefined_macro WUM

 [-WUP] Outputs warning messages for
non-supported #pragma

Wunknown_pragma WUP

 [-WUV] Outputs the warning for uninitialized
auto variables

Wuninitialize_variable WUV

[-WCMW] Specifies the maximum number of

warnings output by ccom30 :

Wccom_max_warning
s=<numeric value>

WCMW=<num
eric value>

[-WEF] Outputs error messages to the specified
file :

Werror_file=<file
name>

WEF=<file
name>

4-11

Figure 4.7 Category:[Warning] Dialog Box

4-12

− Category:[Other]

Table 4.7 Correspondence between Items on the Category:[Other] Dialog Box and Compiler
Options

Dialog Box Option

Miscellaneous options :

 [-silent] Suppresses the copyright message display at startup

 [-v] Displays the name of the command program and the command
line during execution

 [-V] Displays the startup messages of the compiler programs, then
finishes processing (without compiling)

silent

v

V

[-l] Library file : l<file name>

User defined options :

Figure 4.8 Category:[Other] Dialog Box

4-13

4.1.2 Assembler Options

Select the [Assembly] tab in the [Renesas M32C Standard Toolchain] dialog box.

Figure 4.9 [Assembly] Tab Dialog Box

4-14

− Category:[Source]

Table 4.8 Correspondence between Items on the Category:[Source] Dialog Box and Assembler
Options

Dialog Box Option

Show entries for :

 Include file directories

 [-I] The include file specified by ".INCLUDE" that is
written in the source file is searched from a specified
directory.

Defines

 [-D__HEAP__=1] Disable heap are in startup
(ncrt0.a30).

 [-D__STANDARD_IO__=1] Enable initialization for
standard I/O library.

 [-D] Sets constants to symbols :

I<directory name>

D__HEAP__=1

D__STANDARD_IO__=1

D<sub>

 <sub> : <macro name> [=
<string>]

Figure 4.10 Category:[Source] Dialog Box

4-15

− Category:[Object]

Table 4.9 Correspondence between Items on the Category:[Object] Dialog Box and Assembler
Options

Dialog Box Option

[-S] Specifies the local symbol information be output. S

[-SM] Specifies system label and local symbol information output. SM

[-finfo] Generates inspector information. finfo

[-N] Disables output of macro command line information. N

[-mode60] Running AS308 with this parameter to process a
program written in AS30 allows some code to be assembled by
AS308.

mode60

[-mode60p] Runs structured processor(pre30) and processes
parameter –mode60.

mode60p

[-M] Generates structured description command variables in byte
type.

M

[-O] Output file directory : O<directory name>

Figure 4.11 Category:[Object] Dialog Box

4-16

− Category:[List]

Table 4.10 Correspondence between Items on the Category:[List] Dialog Box and Assembler
Options

Dialog Box Option

[-L] Generates assembler list file. L

File format:*1

 [+C] Line concatenation is output directly as is to a list file

 [+D] Information before .DEFINE is replaced is output to a list file

 [+I] Even program sections in which condition assemble resulted in false
conditions are output to the assembler list file

 [+M] Even macro description expansion sections are output to the assembler
list file

 [+S] Even structured description expansion sections are output to the
assembler list file

LC

LD

LI

LM

LS

[-H] Header information is not output to an assembler list file. H

*1: "L" is prefixed to the items selected for the option.

 Example: When the items [+C], [+D], [+I] are selected, the option is -LCDI.

Figure 4.12 Category:[List] Dialog Box

4-17

− Category:[Tuning]

Table 4.11 Correspondence between Items on the Category:[Tuning] Dialog Box and Assembler
Options

Dialog Box Option

[-fMST] Generates special page vector table. fMST

[-fMVT] Generates variable vector table. fMVT

[-abs16] Selects 16-bit absolute addressing. abs16

[-JOPT] Optimizes the branch instrument which refers to the
global label.

JOPT

[-PATCH_TA] Escaping precautions No.1 on the timer functions
for three-phase motor control :

 Number :

PATCH_TA[n]

 [n] : Numeric value
specified in Number

Figure 4.13 Category:[Tuning] Dialog Box

4-18

− Category:[Other]

Table 4.12 Correspondence between Items on the Category:[Other] Dialog Box and Assembler
Options

Dialog Box Option

Miscellaneous options :

 [-.] Disables message output to a display screen

 [-C] Indicates contents of command lines when as30 has invoked
mac30 and asp30

 [-F] Fixes the file name of ..FILE expansion to the source file name

 [-T] Generates assembler error tag file

 [-V] Indicates the version of the assembler system program

.

C

F

T

V

User defined options :

Figure 4.14 Category:[Other] Dialog Box

4-19

4.1.3 Linkage Editor Options

Select the [Link] tab in the [Renesas M32C Standard Toolchain] dialog box.

Figure 4.15 [Link] Tab Dialog Box

4-20

− Category:[Input]

Table 4.13 Correspondence between Items on the Category:[Input] Dialog Box and Linkage
Editor Options

Dialog Box Option

Show entries for :

 Library files

LΔ<file name>

LDΔ<directory name>

[-E] Specifies start address of absolute
module :

EΔ<sub>

 <sub> : <numeric value> | <label name>

Figure 4.16 Category:[Input] Dialog Box

4-21

− Category:[Output]

Table 4.14 Correspondence between Items on the Category:[Output] Dialog Box and Linkage
Editor Options

Dialog Box Option

[-G] Outputs source debug information to absolute module file. G

[-U] Outputs a warning for the unused function names. U

[-W] Link processing is stopped when warning occurs at the time of a link. W

Generate map file :

 None

 [-M] Generates map file

 [-MS] Includes symbol information

 [-MSL] Includes the fullname of symbol information

-

M

MS

MSL

[-O] Specifies absolute module file name : OΔ<file name>

Figure 4.17 Category:[Output] Dialog Box

4-22

− Category:[Tuning]

Table 4.15 Correspondence between Items on the Category:[Tuning] Dialog Box and Linkage
Editor Options

Dialog Box Option

[-fMST] Generates special page vector table. fMST

[-fMVT] Generates variable vector table. fMVT

[-VECT] Sets the address to the free area at the result of
performing automatic generation of a variable vector table.

VECTΔ<sub>

 <sub> : <numeric value> |
<label name>

[-JOPT] Optimizes the branch instrument which refers to the
global label.

JOPT

Figure 4.18 Category:[Tuning] Dialog Box

4-23

− Category:[Section]

Table 4.16 Correspondence between Items on the Category:[Section] Dialog Box and Linkage
Editor Options

Dialog Box Option

Show entries for :

 Section Order

 Section Location

ORDERΔ<sub>[,…]

 <sub> : <section name>[=address]

LOCΔ<sub>[,…]

 <sub> : <section name>=<address>

Figure 4.19 Category:[Section] Dialog Box

4-24

− Category:[Other]

Table 4.17 Correspondence between Items on the Category:[Other] Dialog Box and Linkage
Editor Options

Dialog Box Option

Miscellaneous options :

 [-.] Disables message output to screen

 [-NOSTOP] Outputs all encountered errors to screen

 [-T] Generates link error tag file

 [-V] Indicates version number of linkage editor

.

NOSTOP

T

V

User defined options :

Figure 4.20 Category:[Other] Dialog Box

4-25

− Category:[Subcommand file]

Table 4.18 Correspondence between the Item on the Category:[Subcommand file] Dialog Box and
Linkage Editor Option

Dialog Box Option

[@] Use external subcommand file. @<file name>

Figure 4.21 Category:[Subcommand file] Dialog Box

4-26

4.1.4 Librarian Options

Select the [Librarian] tab in the [Renesas M32C Standard Toolchain] dialog box.

Figure 4.22 [Librarian] Tab Dialog Box

4-27

− Category:[Operation]

Table 4.19 Correspondence between Items on the Category:[Operation] Dialog Box and
Librarian Options

Dialog Box Option

Operation

 [-A] Adds modules to library file

 [-C] Creates new library file

 [-D] Deletes modules from library file

 [-L] Generates library list file

 [-R] Replaces modules

 [-U] Updates modules

 [-X] Extract

A

C

D

L

R

U

X

Figure 4.23 Category:[Operation] Dialog Box

4-28

− Category:[Other]

Table 4.20 Correspondence between Items on the Category:[Other] Dialog Box and Librarian
Options

Dialog Box Option

Miscellaneous options :

 [-.] Disables message output to screen

 [-V] Indicates version of librarian

.

V

User defined options :

Figure 4.24 Category:[Other] Dialog Box

4-29

− Category:[Subcommand file]

Table 4.21 Correspondence between the Item on the Category:[Subcommand file] Dialog Box and
Librarian Option

Dialog Box Option

[@] Use external subcommand file. @<file name>

Figure 4.25 Category:[Subcommand file] Dialog Box

4-30

4.1.5 Load Module Converter Options

Select the [Lmc] tab in the [Renesas M32C Standard Toolchain] dialog box.

Figure 4.26 [Lmc] Tab Dialog Box

4-31

− Category:[Output]

Table 4.22 Correspondence between Items on the Category:[Output] Dialog Box and Load
Module Converter Options

Dialog Box Option

Format :

 Motorola S type format

 [-H] Converts file info Intel HEX format

-

H

[-E] Sets the starting address : EΔ<address>

[-L] Selects maximum length of data record area. L

[-A] Specifies output data range : AΔ<start address>[:end address]

[-O] Specifies output file name : OΔ<file name>

Figure 4.27 Category:[Output] Dialog Box

4-32

− Category:[Code]

Table 4.23 Correspondence between Items on the Category:[Code] Dialog Box and Load Module
Converter Options

Dialog Box Option

[-ID] ID code check ID code setting : ID[sub]

 [sub] : <code protect setting> |
<#numeric value>

ROM code protect function :

 [-protect1] Level 1 setting

 [-protect2] Level 2 setting

 [-protectx] Set the ROM code protect value

protect1

protect2

protectxΔ<numeric value>

[-F] Sets the fill data in the free area : FΔ<data value set in the free area>[sub]

 [sub] : <:start address>[:end address]

Figure 4.28 Category:[Code] Dialog Box

4-33

− Category:[Other]

Table 4.24 Correspondence between Items on the Category:[Other] Dialog Box and Load Module
Converter Options

Dialog Box Option

Miscellaneous options :

 [-.] Disables message output to screen

 [-V] Indicates version of load module converter

.

V

User defined options :

Figure 4.29 Category:[Other] Dialog Box

4-34

4.1.6 Configuration Options

Select the [Cfg] tab in the [Renesas M32C Standard Toolchain] dialog box.

Figure 4.30 [Cfg] Tab Dialog Box

4-35

− Category:[Makefile]

Table 4.25 Correspondence between the Item on the Category:[Makefile] Dialog Box and
Configurator Option

Dialog Box Option

[-m] Creates the UNIX standard or UNIX-compatible system
generation procedure description file (makefile). If this option is not
selected, makefile creation does not occur.

m

Figure 4.31 Category:[Makefile] Dialog Box

4-36

− Category:[Other]

Table 4.26 Correspondence between Items on the Category:[Other] Dialog Box and Configurator
Options

Dialog Box Option

Miscellaneous options :

 [-V] Displays the information on the files generated by the command

 [-v] Displays the command option descriptions and detailed
information on the version

V

v

User defined options :

Figure 4.32 Category:[Other] Dialog Box

4-37

4.1.7 CPU Options

Select the [CPU] tab in the [Renesas M32C Standard Toolchain] dialog box.

Figure 4.33 [CPU] Tab Dialog Box

Table 4.27 Correspondence between Items on the [CPU] Tab Dialog Box and Compiler Options

Dialog Box Option

CPU Type :

 With no specification

 Generates code for M32C/80 series

-

M82

4-38

4.2 Builds

4.2.1 Makefile Output

 Description:

The High-performance Embedded Workshop allows you to create a makefile based on the current
option settings.

By using the makefile, you can build the current project without having to install the High-performance
Embedded Workshop completely. This is convenient when you want to send a project to a person who
has not installed the High-performance Embedded Workshop or manage the version of an entire build,
including the makefile.

 How to generate a makefile:

− Make sure that the project that generates the makefile is the current project.

− Make sure that the build configuration that builds the project is the current configuration.

− Choose [Build > Generate Makefile].

− The following dialog box appears. In this dialog box, select one of the makefile generation
methods.

 Makefile generation directory:

The High-performance Embedded Workshop creates a "make" subdirectory in the current workspace
directory and generates makefiles in this subdirectory. The name of a makefile is the current project or
configuration name followed by the extension .mak (debug.mak, for example). The High-performance
Embedded Workshop-generated makefiles can be executed by using the executable file HMAKE.EXE
contained in the directory where the High-performance Embedded Workshop is installed (c: ¥hew3, for
example). However, user-modified makefiles cannot be executed.

 How to execute a makefile:

1. Open the [Command] window and move to the "make" directory that contains the generated
makefile.

2. Execute HMAKE. On the command line, enter HMAKE.EXE <makefile-name>.

4-39

4.2.2 Makefile Input

 Description:

The High-performance Embedded Workshop allows you to input the makefiles that were generated by
the High-performance Embedded Workshop or used in the UNIX environment.

From the makefile, you can automatically obtain the file structure of the project. (However, you
cannot obtain option settings or similar specifications.) This facilitates the migration from the
command line to the High-performance Embedded Workshop.

 How to input the makefile:

1. When creating a new workspace, select [Import Makefile] from the project type options in the
[New Project Workspace] dialog box.

4-40

2. In the [New Project-Import Makefile] dialog box, specify the makefile path in the [Makefile path]
field, and then click the [Start] button.

3. The [Source files] pane shows the source file structure of the makefile. In this structure chart, any
file marked has been analyzed to make sure it does not contain any entity. This file will not
be added to the project. (It is ignored.)

4. By following the wizard, specify the CPU and other options and open the workspace. You can
then begin a development work.

4-41

4.2.3 Creating Custom Project Types

 Description:

This feature allows a user to use a project created by another user, as a template for developing a
program on another machine.

The template may contain all information about the project, including the project file structure, build
options, and debugger settings.

 How to save the project type:

1. Activate the target project. This is because information about the project that is active when the
workspace is open will be saved. To activate a project, choose [Project -> Set Current Project]
and select the project.

2. Choose [Project -> Create Project Type]. The following project type wizard appears. Enter the
name of the project type you will use as the template, and specify whether to include the
configuration directory containing the post-build executable files and other resources in the
template.

Here, you can click the [Finish] button to quit the project type wizard.

The active project is identified by boldface
characters

4-42

3. In the [New project type wizard – Step 1] dialog box, click the [Next >] button. The following
wizard appears. In (1) below, specify whether to display project information and bitmaps when
the project type template opens.

In (2), you can change the project type icon to a user-specified icon. Click the [Finish] button.

These settings are not mandatory.

4. The above actions create a project type template named "Custom Project Generator". To use this
template on another machine, choose [Tools -> Administration]. The following dialog box
appears.

Select the [Show all components] check box to display the [Project Generators – Custom] folder.

In this folder, click the created project type and click the [Export...] button.

(1)

(2)

4-43

The following dialog box appears. Select a directory to which you want to output the Custom Project
Generator template. The directory must be empty.

This completes the saving of the project type.

 Installing Custom Project Generator:

The following shows how to install the Custom Project Generator template created above on another
machine.

1. The following installation environment is created in the directory that was created at step 5 in
How to save the project type:

(Installation environment directory)

2. Copy the above installation environment and install the copy on another machine.

When you run Setup.exe, the following dialog box appears. Specify the location in which the
High-performance Embedded Workshop is installed, and then click the [Install] button.

(Directory example: C:¥Hew-exe¥ReneHew2¥HEW2.exe)

3. This completes the building of the environment.

4-44

 Example of using the Custom Project Generator:

The following gives an example of using the installed Custom Project Generator template.

1. Start the High-performance Embedded Workshop and choose [Create a new project workspace]
in the [Welcome!] dialog box. The installed project type is added to the [Projects] list. Click the
project type and click the [OK] button.

You can now proceed with program development using the stored project template for any new
project.

Created project type

4-45

4.2.4 Multi-CPU Feature

 Description:

When inserting a new project in the workspace, you can insert a CPU of another type.

This enables you to manage different projects, such as M16C and SH, in a single workspace.

 Example of inserting a different CPU family:

1. When an M16C (SH) project is open, click [Project -> Insert Project...]. In the [Insert Project]
dialog box, select a new project and click the [OK] button.

2. The [Insert New Project] dialog box appears. Select M16C (SH) for the project name and CPU
family, and click the [OK] button. You can place different CPU types in addition to the current
CPU types in the workspace.

3. With the procedure above, you can install M16C and SH projects in a single workspace.

4-46

4.2.5 Networking Feature

 Description:

The High-performance Embedded Workshop allows different users to share workspaces and projects
via a network.

This allows the users to learn changes that other users have made, by manipulating the shared project at
the same time.

This system uses one computer as its server.

For example, if a client adds a new file to a project, the server machine is notified. Then the server
notifies the other clients of the addition.

In addition, users can be granted rights for access to specific projects or files.

 Setting the network access:

1. Choose [Tools -> Options], and then select the [Network] tab. Select the [Enable network data
access] check box.

2. An administrator is added. Since the administrator does not have a password initially, you need to
specify a password. The administrator should be granted the highest access right.

3. Click the [Password] button and specify a password for the administrator.

4. Click the [OK] button. This allows the administrator to access the network.

Server

Client A Client B Client C

Report on file addition

File addition

4-47

[Network] Tab of the [Options] dialog box

Select.

Password setting

Access rights
setting

User addition

Login Button

[Change password] dialog box

4-48

 Adding a new user:

By default, an administrator and a guest have been added. You can register new users.

1. Click the [Log in...] button shown on the previous page. Log in as a user who has administrator
access right.

2. Click the [Access rights] button. The [User access rights] dialog box appears.

3. Click the [Add…] button. The [Add new user] dialog box appears.

4. Enter a new user name and password. (Password specification is mandatory.)

5. The new user name is then added to the user list. Select the user name and specify access right for

the user.

Click the [OK] button to enable your specification.

User name list

Access rights selection

4-49

 Selecting the server machine:

Select the machine that will work as the server. If you want to make your own machine the server, you
do not have to do anything.

If you want to specify another machine as the server, click the [Select server] button in the [Network]
tab. Select [Remote] in the following dialog box, and then specify the computer name.

Click the [OK] button to enable your specification.

 Remarks:
Use of this feature will lower the High-performance Embedded Workshop performance.

4-50

MEMO

5-1

Section 5. Efficient Programming Techniques

While the NC308WA compiler performs its own optimization, resourceful programming can also yield
increased performance. This chapter describes several techniques that users can employ to create more
efficient programs. A program can be evaluated using two criteria: how fast it executes, and how small
it is. The following are important principles for creating efficient programs:

(1) Maximizing execution speed

 Execution speed is determined by both frequently executed statements and complex statements. It is
important to understand how these statements are processed, and to improve them selectively.

(2) Minimizing program size

 To keep the program as small as possible, similar processing sections should be shared, and complex
functions should be simplified whenever possible.

Due to optimization by the compiler, results regarding execution speed may differ from what they
would theoretically be. As such, make use of various methods to improve performance, testing them on
the compiler as you go.

Table 5.1 lists the efficient programming techniques explained in this chapter.

Table 5.1 List of Efficient Programming Techniques

No. Item RAM
efficiency

ROM
efficiency

Execution
speed

5.1 Register passing for arguments

5.2 Using register variables

5.3 Using M16C-specific instructions --

5.4 Using the "carry" flag for bit operation
branching

--

5.5 Moving determinate items within a loop
to outside of the loop

-- --

SBDATA
declarations

-- -- 5.6 SBDATA
declaration and
SPECIAL page
function
declaration utility

SPECIAL page
function declarations

--

5.7 Using "switch" instead of "else if" -- --

5.8 Comparison operators for loop counters --

5.9 restrict --

5.10 Using _Bool -- --

5.11 Explicitly initializing auto variables

5.12 Initializing arrays -- --

5.13 Increments / decrements

5.14 "switch" statements -- --

5.15 Immediate floating-points --

5.16 Zero clearing external variables --

5-2

No. Item RAM
efficiency

ROM
efficiency

Execution
speed

5.17 Organizing start-up --

5.18 Using temporary values within loops --

5.19 Using 32-bit mathematical functions --

5.20 Using unsigned wherever possible --

5.21 Array index types

5.22 Using prototype declarations

5.23 Using the char type for functions that
return only char type values

-- --

5.24 Commenting out clear processing for bss
areas

--

5.25 Reducing generated code --

5.1 Register Passing for Arguments

There are two ways to pass an argument to a function: stack passing, where the argument is passed by
being pushed to the stack, and register passing, where the argument is passed by being assigned to the
register. Whereas stack passing entails the cost of pushing to and popping from the stack, register
passing entails so such cost, and can be performed quickly. Register passing is used under the following
three conditions:

① A prototype declaration exists for the function.

② The … variable argument is not used in the prototype declaration.

③ The function argument type matches one listed in the following table.

Figure 5.1 shows a condition under which the existence of a prototype declaration changes whether
register passing is used or stack passing is used.

Table 5.2 Types for Register Passing

Compiler First argument Second argument

NC30WA _Bool type

char type

int type

near pointer type

int type

near pointer type

NC308WA _Bool type

char type

int type

near pointer type

None.

Note that allocation to the register is as follows when register passing is used.

Table 5.3 Argument Allocation for Register Passing

5-3

Argument type Compiler First
argument

Second
argument

Third and
subsequent
arguments

NC30WA R1L _Bool type

char type NC308WA R0L

Stack Stack

NC30WA R1 R2 int type

near pointer type NC308WA R0 Stack

Stack

NC30WA Other types

NC308WA

Stack Stack Stack

Before After

int main()
{
f(3);
}
int f(a)
int a;
{
…
}

int f(int a);
int main()
{
 f(3);
}
int f(int a)
{
…
}

 push.w #0003H
 jsr _f

 mov.w #0003H,R0
 jsr $f

Figure 5.1 Example of Register Passing for an Argument

5.2 Using Register Variables

You can allocate a frequently used variable to the register by adding the register modifier to the
variable declaration, to speed up the program considerably. However, if you use the register modifier
too much, register space may become insufficient, which can actually slow down the program. Also,
with NC30WA, when a variable remaining from a function call is allocated to the register, register
save/restore instructions are created before and after the function call, which can also slow down the
program. The "-fER" option is required at compile-time for the register modifier to take effect. Figure
5.4 gives an example of such an improvement.

5-4

Figure 5.2 Declaring a Register Variable

Figure 5.3 Register Save/Restore

Before After

int i;
sum=0;
for(i=0;i<100;i++)
{
 sum+=a[i];
}

register int i;
sum=0;
for(i=0;i<100;i++)
{
 sum+=a[i];
}

 ;## # C_SRC : sum=0;
 mov.w #0000H,-4[FB] ; sum
 ;## # C_SRC : for(i=0;i<100;i++)
 mov.w #0000H,-4[FB] ; i
 L1:
 ;## # C_SRC : for(i=0;i<100;i++)
 cmp.w #0064H,-4[FB] ; i
 jge L5
 ;## # C_SRC : sum+=a[i];
 mov.w -4[FB],A0 ; i
 shl.w #1,A0
 add.w _a:16[A0],-2[FB] ; sum
 add.w #0001H,-4[FB] ; i
 jmp L1
L5:

 ;## # C_SRC : sum=0;
 mov.w #0000H,-2[FB] ; sum
 ;## # C_SRC : for(i=0;i<100;i++)
 mov.w #0000H,R0
 L1:
 ;## # C_SRC : for(i=0;i<100;i++)
 cmp.w #0064H,R0 ; i
 jge L5
 ;## # C_SRC : sum+=a[i];
 mov.w R0,A0 ; i i
 shl.w #1,A0
 add.w _a:16[A0],-2[FB] ; sum
 add.w #0001H,R0 ; i
 jmp L1
L5:

Figure 5.4 Using Register Variables

int a;

int f()

{

 register int i;

 i=a;

 g();

 i=a+1;

}

Inefficient, as register save/restore
instructions are generated for
NC30WA.

int f()

{

 register int i;

 for(i=0;i<100;i++)

 {

 ...

 }

}

The variable i is force
placed in the register.

5-5

5.3 Using M16C-specific Instructions

By replacing code that uses an "if" statement to assign a value to a variable with code that uses both an
"if" clause and an "else" clause to assign an immediate value to the same variable, you can reduce
branching by expanding the "STZX" instruction, and increase ROM efficiency. This is shown below.

Before After

void main(void)
{
 int i=2;
 int port;

 if(port == 1){
 i = 3;
 }
}

void main(void)
{
 int i;
 int port;

 if(port == 1){
 i = 3;
 }else{
 i = 2;
 }
}

 mov.w #0002H,R0 ; i
 cmp.w #0001H,-2[FB] ; port
 jne L3
 mov.w #0003H,R0 ; i
L3:

 cmp.w #0001H,-2[FB] ; port
 stzx.w #0003H,#0002H,R0 ; i

Figure 5.5 Using M16C-specific Instructions

5-6

5.4 Using the "Carry" Flag for Bit Operation Branching

In code such as the following, & (|) should be used instead of && (||).

Before After

struct A
{
 int a:1;
 int b:1;
 int c:1;
} a;

main()
{
 if(a.a && a.b && a.c) func();
}

struct A
{
 int a:1;
 int b:1;
 int c:1;
} a;

main()
{
 if(a.a & a.b & a.c) func();
}

 btst 00H,-2[FB] ; a
 jz L1
 btst 01H,-2[FB] ; a
 jz L45
 btst 02H,-2[FB] ; a
 jz L47
 jsr _func
 L47:
 L45:
L1:

 btst 00H,-2[FB] ; a
 band 01H,-2[FB] ; a
 band 02H,-2[FB] ; a
 jnc L29
 jsr _func
L29:

Figure 5.6 Using the "Carry" Flag for Bit Operation Branching

5-7

5.5 Moving Determinate Expressions Within a Loop to Outside of the
Loop

In code such as the following, by moving determinate expressions that are within a loop so that they are
outside the loop, you can reduce the number of calculations required, and thus speed up the program.
This can be done automatically by enabling the optimization option in the compiler.

Figure 5.7 Moving Determinate Expressions Within a Loop to Outside of the Loop

C source Before optimization After optimization

for(i=0;i<100;i++)
 a[i]=l*4;

 ;## # C_SRC : for(i=0;i<100;i++)
 mov.w #0000H,_i:16
 L1:
 ._line 18
 ;## # C_SRC for(i=0;i<100;i++)
 cmp.w #0064H,_i:16
 jge L5
 ;## # C_SRC : a[i]=l*4;
 mov.w _l:16,R0
 shl.w #2,R0
 indexwd.w _i:16
 mov.w R0,_a:16
 add.w #0001H,_i:16
 jmp L1
 L5:

 ;## # C_SRC :for(i=0;i<100;i++)
 mov.w #0000H,_i:16
 mov.w l:16,R0
 shl.w #2,R0
 L1:
 ;## # C_SRC : a[i]=l*4;
 indexwd.w _i:16
 mov.w R0,_a:16
 add.w #0001H,_i:16
 cmp.w #0064H,_i:16
 jlt L1

Figure 5.8 Performing Optimization to Move Determinate Items Within a Loop to Outside
of the Loop

for(i=0;i<100;i++){

 k+=i+l*4;

}

tmp=l*4;

for(i=0;i<100;i++){

 k+=i+tmp;

}

5-8

5.6 SBDATA Declaration and SPECIAL Page Function Declaration
Utility

utl308, the SBDATA declaration and SPECIAL page function declaration utility, processes absolute
module files (*.x30), and outputs the following:

1. SBDATA declaration

This declaration is for performing allocation from frequently used variables, to the SB area.

(#pragma SBDATA)

2. SPECIAL page function declaration

This declaration is for performing allocation from frequently used functions, to the special page
area.

(#pragma SPECIAL)

To use utl308, at compile-time, specify the command line option "-finfo" in the compile driver to
generate absolute module files (*.x30).

Figure 5.9 shows the processing flow for NC308. You can use this tool for optimum usage of SBDATA
functionality and SPECIAL page functionality. For details, in the NC308 User's Manual, see Appendix
G.

Figure 5.9 SBDATA Declaration and SPECIAL Page Function Declaration Utility

C source file
Compile driver

Preprocessor

Preprocessed
C source file

Assembly
source file

Assembler

Linker

Relocatable
object file

Compiler

nc30 command
line options

Absolute
module file

Generation by
specifying
command line
option for nc308

SBDATA declaration
and SPECIAL page
function declaration
utility

SPECIAL page
function
declaration file

SBDATA
declaration file

SPECIAL page
vector definition
file

File output by nc308

5-9

5.7 Using "switch" Instead of "else if"

When comparing arrays or other structures multiple times, it is faster to use a "switch" statement than
an "else if" statement. This is because "else if" statements perform comparisons through indirect
addressing, while "switch" statements secure space and perform comparisons within the register.

Before After

if(a[i]==0){
 ...
} else if(a[i]==1){
 ...
} else if(a[i]==2){
 ...
} else {
 ...
}

switch(a[i])
{
 case 0:
 ...
 break;
 case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
 beak;
}

;## # C_SRC : if(a[i]==0)
 mov.w R0,R1 ; i i
 shl.w #1,R0
 mov.w R0,A0
 mov.w _a:16[A0],R0
 jne L1
 ...
 ;## # C_SRC : else if(a[i]==1)
 L1:
 mov.w R1,A0 ; i i
 shl.w #1,A0
 cmp.w #0001H,_a:16[A0]
 jne L11
 ...
 ;## # C_SRC : else if(a[i]==2)
 L11:
 mov.w R1,A0 ; i i
 shl.w #1,A0
 cmp.w #0002H,_a:16[A0]
...

 indexws.w R0 ; i
 mov.w:g _a:16,R0
 cmp.w #0000H,R0
 jeq L3
 cmp.w #0001H,R0
 jeq L5
 cmp.w #0002H,R0
 jeq L7
 jmp L9
 ...

Figure 5.10 Using "switch" Instead of "else if"

5-10

5.8 Comparison Operators for Loop Counters

Within a loop, comparisons to 0 both use less ROM, and execute faster.

Before After

for(i=0;i<10;i++){
 ...
}

for(i=10;i!=0;i--){
 ...
}

add.w #0001H,_i
cmp.w #000aH,_i
jlt label

adjnz.w #-1,_i,label

Figure 5.11 Comparison Operators for Loop Counters

5.9 restrict

You can facilitate optimization by using the restrict modifier, as long as you are sure that you do not
point to the same areas as variables. Note that if you use the restrict modifier when pointing to the same
areas as variables, a malfunction may occur.

Before After

int a;
int *q;
void f()
{
 a=10;
 *q=20;
 sub(a);
}

int a;
int * restrict q;
void f()
{
 a=10;
 *q=20;
 sub(a);
}

 _f:
 ;## # C_SRC : a=10;
 mov.w #000aH,_a:16
 ;## # C_SRC : *q=20;
 mov.w #0014H,[_q:16]
 ;## # C_SRC : sub(a);
 mov.w _a:16,R0
 jsr $sub
 ;## # C_SRC : }
 rts

 _f:
 ;## # C_SRC : a=10;
 mov.w #000aH,_a:16
 ;## # C_SRC : *q=20;
 mov.w #0014H,[_q:16]
 ## # C_SRC : sub(a);
 mov.w #000aH,R0
 jsr $sub
 ;## # C_SRC : }
 rts

Figure 5.12 Example Usage of restrict

a needs to be loaded.
This is replaced with
a=10.

5-11

5.10 Using _Bool

_Bool is a Boolean type, which can be either 0 or 1. You can use the _Bool flag to prevent unnecessary
exception processing.

Before After

char flag;

if(flag==0){
 ...
} else if(flag==1) {
 ...
}else{
// exception processing
}

_Bool flag;

if(flag==0){
 ...
} else {
 ...
}

Figure 5.13 Example Usage of _Bool

5.11 Explicitly Initializing auto Variables

When you initialize an auto variable, it is allocated to the register. Otherwise, it is stored in the stack.
The optimization option is required for this optimization.

Before After

extern unsigned int *p, max_val, min_val;
void func(void)
{
 unsigned int max = 0;
 unsigned int min; // Pushed to
 // stack
 while (1) {
 if (max == 0) min = max = *p;
 if (max < *p) max = *p;
 if (min > *p) min = *p;
 p++;
 if (*p == 0) break;
 }
 max_val = max;
 min_val = min;
}

extern unsigned int *p, max_val, min_val;
void func(void)
{
 unsigned int max = 0;
 unsigned int min=*p; // Allocated
 // to register
 while (1) {
 if (max == 0) min = max = *p;
 if (max < *p) max = *p;
 if (min > *p) min = *p;
 p++;
 if (*p == 0) break;
 }
 max_val = max;
 min_val = min;
}

5-12

 .glb _func
 _func:
 enter #02H
 pushm R1
 ;## # C_SRC : unsigned int max = 0;
 mov.w #0000H,R0 ; max
 ;## # C_SRC : while (1)
 L3:
 ;## # C_SRC : if (max == 0) min =
 max = *p;
 cmp.w #0000H,R0 ; max
 jne L7
 mov.w [_p:16],R0
 mov.w R0,R1
 mov.w R1,-2[FB] ; min
 L7:
 ;## # C_SRC : if (max < *p) max = *p;
 cmp.w [_p:16],R0 ; max
 jgeu L17
 mov.w [_p:16],R0
 L17:
 ;## # C_SRC : if (min > *p) min = *p;
 cmp.w [_p:16],-2[FB] ; min
 mov.w [_p:16],-2[FB] ; min
 L27:
 ;## # C_SRC : p++;
 add.l #00000002H,_p:16
 ;## # C_SRC : if (*p == 0) break;
 mov.w [_p:16],R1
 jne L3
 ;## # C_SRC : max_val = max;
 mov.w R0,_max_val:16 ; max
 ;## # C_SRC : min_val = min;
 mov.w -2[FB],_min_val:16 ; min
 ;## # C_SRC : }
 popm R1
 exitd

 .glb _func
 _func:
 pushm R1
 ;## # C_SRC : unsigned int max = 0;
 mov.w #0000H,R0 ; max
 ;## # C_SRC : unsigned int min=*p;
 mov.w [_p:16],R1 ; min
 ;## # C_SRC : while (1)
 L3:
 ;## # C_SRC : if (max == 0) min = max = *p;
 cmp.w #0000H,R0 ; max
 jne L7
 mov.w [_p:16],R0
 mov.w R0,R1
 L7:
 ._line 27
 ;## # C_SRC : if (max < *p) max = *p;
 cmp.w [_p:16],R0 ; max
 jgeu L17
 mov.w [_p:16],R0
 L17:
 ._line 28
 ;## # C_SRC : if (min > *p) min = *p;
 cmp.w [_p:16],R1 ; min
 jleu L27
 mov.w [_p:16],R1
 L27:
 ;## # C_SRC : p++;
 add.l #00000002H,_p:16
 ;## # C_SRC : if (*p == 0) break;
 cmp.w #0000H,[_p:16]
 jne L3
 ;## # C_SRC : max_val = max;
 mov.w R0,_max_val:16 ; max
 ;## # C_SRC : min_val = min;
 mov.w R1,_min_val:16 ; min
 ;## # C_SRC : }
 popm R1
 rts

Figure 5.14 Explicitly Initializing auto Variables

5.12 Initializing Arrays

When two arrays are initialized within a loop statement, move one of them to a separate loop. This
allows the loops to be expanded using the sstr instruction, to increase execution speed.

However, when initializing three or more arrays, perform initialization within the same loop to improve
ROM efficiency. This is because the sstr instruction requires an initial setup for each register, degrading
ROM efficiency when 3 or more arrays are initialized.

5-13

Before After

/* Initialization within the same loop */
void loop2_1(void)
{
 int i;
 for(i = 0; i < 10; i++){
 a[i] = 0x0a;
 b[i] = 0x0b;
 }
}

/* Initialization within a separate loop */
void loop2_2(void)
{
 int i;
 for(i = 0; i < 10; i++)
 a[i] = 0x0a;
 for(i = 0; i < 10; i++)
 b[i] = 0x0b;
}

_loop2_1:
pushm A0
mov.w #0000H,R0
L3:
mov.w R0,A0
mov.b #0aH,_a:16[A0]
mov.b #0bH,_b:16[A0]
add.b #01H,A0
mov.w A0,R0
cmp.w #000aH,R0
jlt L3
popm A0
rts

_loop2_2:
pushm R3,A1
mov.b #0aH,R0L
mov.w #(_a&0FFFFH),A1
mov.w #0aH,R3
sstr.b
mov.b #0bH,R0L
mov.w #(_b&0FFFFH),A1
mov.w #0aH,R3
sstr.b
popm R3,A1
rts

Figure 5.15 Initializing Arrays

5.13 Increments / Decrements

Separate increments and decrements from expressions. The compiler will attempt to keep the value
before the increment/decrement.

Before After

a[i++]=b[j++];

a[i]=b[j];
i++;
j++;

 mov.w -22[FB],R0 ; j
 add.w #0001H,-22[FB] ; j
 indexws.w R0
 mov.w:g -22[FB],R0 ; b
 indexwd.w -2[FB] ; i
 mov.w R0,-22[FB] ; a
 add.w #0001H,-2[FB] ; i

 indexws.w -4[FB] ; j

 mov.w:g -24[FB],R0 ; b
 indexwd.w -2[FB] ; i

 mov.w R0,-24[FB] ; a
 add.w #0001H,-2[FB] ; i
 add.w #0001H,-4[FB] ; j

Figure 5.16 Increments / Decrements

5-14

5.14 "Switch" Statements

For more efficient code, in "switch" statements with several case values, reduce the intervals between
the case values when possible. This is because code for large intervals is expanded to" if else" formats,
while that for small intervals is expanded to branch tables. It is also a good idea to use the enum type
for case values.

Before After

switch(a)
{
 case 100:
 ...
 case 200:
 ...
 case 300:
 ...
}

switch(a)
{
 case 1:
 ...
 case 2:
 ...
 case 3
 ...
}

 cmp.w #0064H,R0
 jeq L5
 cmp.w #00c8H,R0
 jeq L7
 cmp.w #012cH,R0
 jeq L9
 ...

 S2:
 jmpi.w L47
 L47:
 .word L45-S2&0ffffH
 .word L23-S2&0ffffH
 .word L25-S2&0ffffH
 ...

Figure 5.17 "switch" Statements

5.15 Immediate Floating-points

When precision is not an issue, append the f suffix to floating-point numbers. A number without the f
suffix is processed as a double type.

Before After

float f;
f=f+123.456;

float f;
f=f+123.456f;

push.l _f:16
.glb __f4tof8
jsr.a __f4tof8
add.l #04H,SP
pushm R3,R2,R1,R0
push.l #405edd2fH
push.l #1a9fbe77H
jsr.a __f8add
add.l #010H,SP
pushm R3,R2,R1,R0
jsr.a __f8tof4
add.l #08H,SP
mov.l R2R0,_f:16

push.l _f:16
push.l #42f6e979H
jsr.a __f4add
add.l #08H,SP
mov.l R2R0,_f:16

Figure 5.18 Immediate Floating-points

5-15

5.16 Zero Clearing External Variables

During startup, the initial value of all external variables is zero cleared, even when not explicitly set as
such. When you explicitly zero clear a variable, since a 0 is secured in ROM and transferred during
startup, ROM space is wasted. As such, do not zero clear the initial value of an external variable.

Before After

int i=0

int i;

 .SECTION data_NE,DATA
 ._inspect 'U', 1, "data_NE", "data_NE", 0
 .glb _i
_i:
 .blkb 2

 .SECTION data_NEI,ROMDATA
 ._inspect 'U', 1, "data_NEI", "data_NEI", 0
;## # init data of i.
 .word 0000H

 .SECTION bss_NE,DATA
 ._inspect 'U', 3, "bss_NE", "bss_NE", 0
 .glb _i
 _i:
 .blkb 2

Figure 5.19 Zero Clearing External Variables

5-16

5.17 Organizing Startup

If you know that no standard I/O functions or memory management functions will be used, you can
speed up the program by omitting their initial setup. By specifying "-D__STANDARD_IO__=1" and
"-D__HEAP__=1" at assembly-time for ncrt0.a30, you can disable initialization processing for these
functions. Figure 5.21 shows the High-performance Embedded Workshop dialog box for setting
"-D__STANDARD_IO__=1" and "-D__HEAP__=1".

Figure 5.20 Organizing Startup

;---
; HEAP SIZE definition
;---
.if __HEAP__ == 1 ; for HEW

HEAPSIZE .equ 0h

.else
.if __HEAPSIZE__ == 0

HEAPSIZE .equ 300h

.else ; for HEW

HEAPSIZE .equ __HEAPSIZE__

.endif
.endif

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
;==================================================================== 
; Initialize standard I/O 
;-------------------------------------------------------------------- 
.if __STANDARD_IO__ != 1 
 .glb _init 
 .call _init,G 
 jsr.a _init 
.endif 



5-17 

 

Figure 5.21 The High-performance Embedded Workshop Dialog Box for Organizing Startup 

 

 



5-18 

5.18 Using Temporary Values within Loops 

When an external variables is used within a loop, memory is referenced for each iteration. You can 
facilitate calculation in the register by using temporary variables. 

 

Before After 
 
int total; 
void func(int p[]) 
{ 
   int i; 
   total=0; 
   for(i=0;i<100;i++){ 
      total+=p[i];  // Memory referenced 
                      // each time 

} 
} 
 

 
int total; 
void func(int p[]) 
{ 
   int i,tmp; 
   tmp=0; 
   for(i=0;i<100;i++){ 
       tmp+=p[i];  // Calculation performed 
                     // in register. 

} 
total=tmp; 

} 
 

 
_func: 
  enter #02H 
  pushm R2,A0 
;## # C_SRC : total=0; 
  mov.w #0000H,_total:16 
;## # C_SRC : for(i=0;i<100;i++){ 
  mov.w #0000H,-2[FB] ;  i  
L1: 
;## # C_SRC : for(i=0;i<100;i++){ 
  cmp.w #0064H,-2[FB] ;  i  
  jge L5 
;## # C_SRC : total+=p[i]; 
//Memory referenced each time. 
  mov.w -2[FB],R0 ;  i  
  exts.w R0 
  mov.l R2R0,A0 
  shl.l #1,A0 
  add.l 8[FB],A0 ;  p  
  add.w [A0],_total:16 
  add.w #0001H,-2[FB] ;  i  
  jmp L1 
L5: 
;## # C_SRC : } 
  popm R2,A0 
  exitd 

 
_func: 
  enter #00H 
  pushm R1,R2,R3,A0,A1 
  mov.l 8[FB],A0 ;  p  p  
;## # C_SRC : tmp=0; 
  mov.w #0000H,R1 ;  tmp  
;## # C_SRC : for(i=0;i<100;i++) 
  mov.w #0000H,R0 ;  i  
L1: 
;## # C_SRC :tmp+=p[i]; 
// Calculation performed in register. 
  mov.w R0,R3 ;  i  i  
  exts.w R0 
  mov.l R2R0,A1 
  shl.l #1,A1 
  add.l A0,A1 ;  p  
  add.w [A1],R1 
  add.w #0001H,R3 ;  i  
  mov.w R3,R0 ;  i  i  
  cmp.w #0064H,R0 ;  i  
  jlt L1 
;## # C_SRC : total=tmp; 
 mov.w R1,_total:16 ;  tmp  
;## # C_SRC : } 
  popm R1,R2,R3,A0,A1 
  exitd  

Figure 5.22 Using Temporary Values within Loops 

 

Replaced by a 
calculation in 
the register. 

Memory is 
referenced for 
each iteration 
in the loop.



5-19 

5.19 Using 32-bit Mathematical Functions 

You can use 32-bit mathematical functions for variables of the float type to increase execution speed. 
When the standard mathematical functions are used, the arguments are first converted up to the double 
type, and the resulting double type value is converted back to a float type value when substituted for 
the variable. When 32-bit mathematical operations are used, all calculations are performed using the 
float type. 

 

Before After 
 
#include<math.h> 
float fdata,result;  
result=sin(fdata); 
 
 
 
 
 
 

 
#include<mathf.h> 
float fdata,result; 
result=sinf(fdata) 

 
 ;## # C_SRC : result=sin(fdata); 
 push.l _fdata:16 
 .glb __f4tof8 
 jsr.a __f4tof8 
 add.l #04H,SP 
 pushm R0,R1,R2,R3 
 jsr _sin 
 add.l #08H,SP 
 pushm R3,R2,R1,R0 
 .glb __f8tof4 
 jsr.a __f8tof4 
 add.l #08H,SP 
 mov.l R2R0,_result:16 

 
 ;## # C_SRC : result=sinf(fdata); 
 push.l _fdata:16 
 jsr _sinf 
 add.l #04H,SP 
 mov.l R2R0,_result:16 

Figure 5.23 Using 32-bit Mathematical Functions 

float conversion 

double conversion

Calculation as float 



5-20 

5.20 Using unsigned Whenever Possible 

Use unsigned integers whenever possible, to improve code efficiency for branching instructions (note, 
however, that this can worsen code efficiency for only the M16C/20 and M16C/60 series, as adding 
"unsigned" in NC308 incurs sign extension). Also, when comparing signed integers, use the != and == 
operators instead of the <=, >=, <, > operators to improve code efficiency whenever possible. 

 

Before After 
 
int data[100]; 
void main() 
{ 
    int i; 
    int sum=0; 
    for(i=0;i<100;i++) sum+=data[i]; 
} 

 
int data[100]; 
void main() 
{ 
     unsigned int i; 
     int sum=0; 
     for(i=0;i!=100;i++)sum+=data[i]; 
} 
 

 
  ;## # C_SRC :  int sum=0; 
     mov.w #0000H,-4[FB] ;  sum  
  ;## # C_SRC :for(i=0;i<100;i++)sum+= 
     data[i]; 
     mov.w #0000H,-2[FB] ;  i  
   L1: 
   ;## # C_SRC : for(i=0;i<100;i++)sum+= 
     data[i]; 
     cmp.w #0064H,-2[FB] ;  i  
     jge L5 
     mov.w -2[FB],A0 ;  i  
     shl.w #1,A0 
     add.w _data:16[A0],-4[FB] ;  sum  
     add.w #0001H,-2[FB] ;  i  
     jmp L1 
L5: 

 
   ;## # C_SRC : int sum=0; 
     mov.w #0000H,-4[FB] ;  sum  
   ;## # C_SRC :for(i=0;i!=100;i++)sum+= 
     data[i]; 
     mov.w #0000H,-2[FB] ;  i  
   L1: 
   ;## # C_SRC :for(i=0;i!=100;i++)sum+= 
      data[i]; 
     cmp.w #0064H,-2[FB] ;  i  
     jeq L5 
     mov.w -2[FB],A0 ;  i  
     shl.w #1,A0 
     add.w _data:16[A0],-4[FB] ;  sum  
     add.w #0001H,-2[FB] ;  i  
     jmp L1 
   L5: 

Figure 5.24 Example Usage of Unsigned 



5-21 

5.21 Array Index Types 

Type expansion is performed during calculation for array indexes, based on the size of an element in 
the array. 

(1) For sizes 2 bytes or larger (for types other than the char type or signed char type): 

Calculation is performed by extending the index to the int type. 

(2) For far-type arrays of 64K or larger: 

Calculation is performed by extending the index to the long type. 

As such, when you use a char-type variable as the array index, it must be extended to the int type, 
making for inefficient code. So, use the int type, instead of the char type, for array indexes. Note that 
this optimization is for NC30WA only. 

 

Before After 
 
char i; 
int a[10]; 
a[i]=0; 
 

 
int i; 
int a[10]; 
a[i]=0; 

 
 mov.b -1[FB],R0L ;  i  
 mov.b #00H,R0H 
 shl.w #01H,R0 
 mova  -21[FB],A0 ;  a  
 add.w R0,A0 
 mov.w #0000H,[A0] 

 
 mov.w -2[FB],R0 ;  i  
 shl.w #01H,R0 
 mova -22[FB],A0 ;  a  
 add.w R0,A0 
 mov.w #0000H,[A0] 

Figure 5.25 Array Index Types 

5.22 Using Prototype Declarations 

With this compiler, you can use function prototype declarations to perform more efficient function calls. 
In other words, if you do not use function prototype declarations with this compiler, when such 
functions are called, their arguments are pushed to the stack area by the rules shown in the following 
table. 

Table 5.4 Stack Usage Rules Pertaining to Arguments 

Data type Rule when pushed to a stack 

char type 

signed char type 

Extended to the int type. 

float type Extended to the double type. 

Other types Not extended. 
 

This means that when function prototype declarations are not used, redundant type extension may be 
performed. 

You can use function prototype declarations to improve efficiency of function calls, to avoid redundant 
type extension and allow arguments to be allocated to the register. 



5-22 

 
Before After 

 
 
int main() 
{ 
char data1; 
char data2; 
char data3; 
int data; 
data=f(data1,data2,data3); 

} 
int f( i, j, k) 
char i,j,k; 
{ 
... 

} 

 
int f(char ,char ,char); 
 
int main() 
{ 
char data1; 
char data2; 
char data3; 
int data; 
data=f(data1,data2,data3); 

} 
 
int f( i, j,k) 
char i,j,k; 
{ 
... 
} 
 

 
 extz -2[FB],R0 ;  data3  
 push.w R0 
 extz -2[FB],R0 ;  data2  
 push.w R0 
 extz -2[FB],R0 ;  data1  
 push.w R0 
 jsr _f 
 

 
 push.b -2[FB] ;  data3  
 push.b -2[FB] ;  data2  
 mov.b -2[FB],R0L ;  data1  
 jsr $f 

Figure 5.26 Using Prototype Declarations 



5-23 

5.23 Using the char Type for Functions that Return only char Type 
Values 

You can decrease the amount of ROM space used by using the char type for the return value of 
functions that only return values of this type. 

Also, use smaller data types whenever possible. 

 

Before After 
 
int func2(void) 
{ 
       switch (x) { 
       case 0: 
           return 255;  
       case 1: 
           return 254; 
       default: 
           return 253; 
       } 
  } 

 
char func2(void) 
{ 
       switch (x) { 
       case 0: 
           return 255;  
       case 1: 
           return 254; 
       default: 
           return 253; 
       } 
  } 

 
    .glb _func2 
   _func2: 
   ;## # C_SRC : switch (x) { 
     mov.w _x:16,R0 
     jeq L3 
     cmp.w #0001H,R0 
     jeq L5 
     jmp L7 
   ;## # C_SRC : case 0: 
   L3: 
   ;## # C_SRC : return 255; 
     mov.w #00ffH,R0 
     rts 
   ;## # C_SRC : case 1: 
   L5: 
   ;## # C_SRC : return 254; 
     mov.w #00feH,R0 
     rts  
   ;## # C_SRC : default: 
   L7: 
   ;## # C_SRC : return 253; 
     mov.w #00fdH,R0 
   rts 

 
    .glb _func2 
   _func2: 
   ;## # C_SRC : switch (x) { 
     mov.w _x:16,R0 
     jeq L3 
     cmp.w #0001H,R0 
     jeq L5 
     jmp L7 
   ;## # C_SRC : case 0: 
   L3: 
   ;## # C_SRC : return 255; 
     mov.b #0ffH,R0L 
     rts 
   ;## # C_SRC : case 1: 
   L5: 
   ;## # C_SRC : return 254; 
     mov.b #0feH,R0L 
     rts 
   ;## # C_SRC : default: 
   L7: 
   ;## # C_SRC : return 253; 
     mov.b #0fdH,R0L 
   rts 

Figure 5.27 Using the char Type for Functions that Return only char Type Values 



5-24 

5.24 Commenting Out Clear Processing for bss Areas 

The startup program ncrt0.a30 contains bss area clear processing. This processing exists to satisfy the C 
language specification that uninitialized variables should have 0 as their initial value. 

For example, since the code shown in Figure 5.28 contains a variable with no initial value, processing 
(bss area clear processing) is required during startup to set 0 as the initial value. 

 

 

Figure 5.28 Example Declaration for a Variable that Has no Initial Value 

Depending on the application, variables without an initial value may not need to be zero cleared. In this 
case, you can speed up startup processing by commenting out the part of the startup program where bss 
area clear processing takes place. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29 Example of Commenting Out of Clear Processing for bss Areas 

static int i; 

;=================================================================== 
; NEAR area initialize. 
;------------------------------------------------------------------- 
; bss zero clear 
;------------------------------------------------------------------- 
; N_BZERO bss_SE_top,bss_SE 
; N_BZERO bss_SO_top,bss_SO 
; N_BZERO bss_NE_top,bss_NE 
; N_BZERO bss_NO_top,bss_NO 
  : 
 (omitted) 
  : 
;=================================================================== 
; FAR area initialize. 
;------------------------------------------------------------------- 
; bss zero clear 
;------------------------------------------------------------------- 
; BZERO bss_FE_top,bss_FE 
; BZERO bss_FO_top,bss_FO 



5-25 

5.25 Reducing Generated Code 

You can reduce the amount of generated code for data that is declared using the int type, and is within 
the following ranges: 

From 0 to 255: Change to the unsigned char type. 

From -128 to 127: Change to the signed char type. 

By decreasing the size of the variable type, you can reduce the size of comparison, addition, and other 
instructions, and thus increase ROM efficiency. 

 

Before After 
 
int type 
 
int data[128]; 
 
void main(void) 
{ 
 
   int cnt = 128; 
   int i; 
 
   int sum=0; 
 
   for( i = 0 ; i < cnt ; i++ ){ 
     sum += data[i]; 
   } 
 
} 
 

 
unsigned char type 
 
void main(void) 
{ 
 
   unsigned char cnt = 128; 
   unsigned char i; 
 
   int data[128]; 
   int sum; 
 
   for( i = 0 ; i < cnt ; i++ ){ 
     sum += data[i]; 
   } 
 
} 

 
   ;## # C_SRC : int cnt = 128; 
     mov.w #0080H,-6[FB] ;  cnt  
   ;## # C_SRC : for( i = 0 ; i < cnt ; i++ )
     mov.w #0000H,-4[FB] ;  i  
   L1: 
   ;## # C_SRC : for( i = 0 ; i < cnt ; i++ )
     cmp.w -6[FB],-4[FB] ;  cnt  i  
     jge L5 
   ;## # C_SRC : sum += data[i];  
     mov.w -4[FB],A0 ;  i  
     shl.w #1,A0 
     mova -262[FB],A1 ;  data  
     add.l A1,A0 
     add.w [A0],-2[FB] ;  sum  
     add.w #0001H,-4[FB] ;  i  
     jmp L1 
   L5: 
   ;## # C_SRC : } 
     popm A0,A1 
     exitd 

 
   ;## # C_SRC : unsigned char cnt = 128;
   mov.b #80H,-2[FB] ;  cnt  
   ;## # C_SRC : for( i = 0 ; i < cnt ; i++ )
     mov.b #00H,-1[FB] ;  i  
   L1: 
   ;## # C_SRC : for( i = 0 ; i < cnt ; i++ )
     cmp.b -2[FB],-1[FB]  ;  cnt  i  
     jgeu L5 
   ;## # C_SRC : sum += data[i];  
     mov.b -1[FB],A0 ;  i  
     shl.w #1,A0 
     mova -260[FB],A1 ;  data  
     add.l A1,A0 
     add.w [A0],-4[FB] ;  sum  
     add.b #01H,-1[FB] ;  i  
     jmp L1 
   L5: 
   ;## # C_SRC : } 
     popm A0,A1 
     exitd  

Figure 5.30 Reducing Generated Code (1) 



5-26 

You can reduce the amount of generated code for data that is declared using the long type, and is within 
the following ranges and meets the following criteria: 

From 0 to 65535: Change to the unsigned int type. 

From -32768 to 32767: Change to the signed int type. 

By decreasing the size of the variable type, you can reduce the size of comparison, addition, and other 
instructions, and thus increase ROM efficiency. 

 

Before After 
 
unsigned int data[65535]; 
                   
void main(void) 
{ 
 
 long cnt = 65535; 
 long i; 
 
 int sum; 
 
 for( i = 0 ; i < cnt ; i++ ){ 
  sum += data[i]; 
 } 
} 

 
unsigned int data[65535]; 
                   
void main(void) 
{ 
 
 unsigned int cnt = 65535; 
 unsigned int i; 
 
 int sum; 
 
 for( i = 0 ; i < cnt ; i++ ){ 
  sum += data[i]; 
 } 
} 

 
   ;## # C_SRC : long cnt = 65535; 
     mov.l #0000ffffH,-10[FB] ;  cnt  
   ;## # C_SRC : for( i = 0 ; i < cnt ; i++ )
     mov.l #00000000H,-6[FB] ;  i  
   L1: 
   ;## # C_SRC : for( i = 0 ; i < cnt ; i++ )
     cmp.l -10[FB],-6[FB] ;  cnt  i  
     jge L5 
   ;## # C_SRC : sum += data[i]; 
     mov.l -6[FB],A0 ;  i  
     shl.l #1,A0 
     add.w _data:16[A0],-2[FB] ;  sum  
     add.l #00000001H,-6[FB] ;  i  
     jmp L1 
   L5: 
   ;## # C_SRC : } 
     popm A0 
   exitd 

 
   ;## # C_SRC : unsigned int cnt = 65535;
     mov.w  #0ffffH,-6[FB] ;  cnt  
   ;## # C_SRC : for( i = 0 ; i < cnt ; i++ )
     mov.w  #0000H,-4[FB] ;  i  
   L1: 
   ;## # C_SRC : for( i = 0 ; i < cnt ; i++ )
     cmp.w -6[FB],-4[FB] ;  cnt  i  
     jgeu L5 
   ;## # C_SRC : sum += data[i];  
     mov.w -4[FB],A0 ;  i  
     shl.l #1,A0 
     add.w _data:16[A0],-2[FB] ; sum  
     add.w #0001H,-4[FB] ;  i  
     jmp L1 
   L5: 
   ;## # C_SRC : } 
     popm A0 
   exitd 

Figure 5.31 Deleting Generated Code (2) 



6-1 
 

Section 6. Using the Simulator Debugger 

This chapter explains how to use the simulator debugger supplied with the NC30WA effectively, and 
consists of the following contents: 

 

No. Category Item Section

1 Inserting a Virtual Interrupt by Button Click 6.1.1 

2 Inserting a Virtual Interrupt at a Regular Interval 6.1.2 

3 Inserting a Virtual Interrupt at a Specified Cycle 6.1.3 

4 

Using the Virtual 
Interrupt Function 

Inserting a Virtual Interrupt When an Instruction 
at a Specified Address Is Executed 

6.1.4 

5 Entering Data by Button Click 6.2.1 

6 Entering Data from a Virtual Port When a 
Specified Address Is Read 

6.2.2 

7 Entering Data from a Virtual Port at a Specified 
cycle 

6.2.3 

8 Entering Data from a Virtual Port When a Virtual 
Interrupt Occurs 

6.2.4 

9 

Using the Virtual 
Port Input/Output 
Function 

Checking Data Output to a Virtual Output Port 6.2.5 

10 Using a Virtual LED or Label to Check the Memory Contents 6.3 

11 Using printf for Debugging 6.4 

12 Using I/O Scripts 6.5 
 



Section 6   Using the Simulator Debugger 
 

6-2 
 

6.1 Using the Virtual Interrupt Function 

6.1.1 Inserting a Virtual Interrupt by Button Click 

 Description: 

An interrupt can be generated manually by clicking a virtual interrupt button as if the button click is a 
cause of the interrupt. 

Set the interrupt priority and interrupt condition for the button. 

 

■ How to create a button for generating a virtual interrupt manually: 

1. From the menu, choose [View -> Graphics -> GUI I/O] to display the GUI window. 

2. Either click the button creation icon, or right-click and choose [Create button] from the menu 
displayed to create a button for generating a virtual interrupt. 

 

 

 

 

 

 

 

 

 

 

 

 

3. Click the created button to display the settings window for the button. 

 

 

 

Figure 6.1  GUI Window 

Figure 6.2  GUI Window (After Button Placement) 



Section 6   Using the Simulator Debugger 
 

6-3 
 

 

4. For the button type, select [Interrupt], and then set the interrupt vector and IPL (interrupt priority 
level). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. In the file for which the vector table is set, set the interrupt vector. In this case, in the [vector 12] 
line, [.lword dummy_int] is changed to [.lword _test], and the test function in the source code is 
called when the button is pressed. 

 

 

 

 

 

 

 

 

 

 

 

6. During debugging, click the button created in step 2 to generate a virtual interrupt. 

 

;--------------------------------------------------------------- 
; variable vector section 
;--------------------------------------------------------------- 
 .section vector,ROMDATA  ; variable vector table 
 .org VECTOR_ADR  
 
 .lword dummy_int      ; vector 0 
 .lword dummy_int      ; vector 1 
 

  ： 

 
 .glb    _test 
 .lword  _test         ; vector 12 
 

  ： 

Figure 6.3  Button Settings Window 



Section 6   Using the Simulator Debugger 
 

6-4 
 

6.1.2 Inserting a Virtual Interrupt at a Regular Interval 

 Description: 

A virtual interrupt that occurs in sync with a set time interval can be set up in the [I/O Timing Setting] 
window. 

 

 How to set up: 

1. From the menu, choose [View -> CPU -> I/O Timing Setting] to display the [I/O Timing Setting] 
window. 

2. Either click the time interval sync interrupt icon, or right-click and choose [Timer] from the menu 
displayed to display the window for setting the interval sync interrupt. 

 

 

 

 

 

 

 

 

 

 

3. Click the [Load…] button to import a settings file. 

4. Unless you are importing a settings file, enter the time interval, vector, and priority, and then click 
the [Add] button. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4  I/O Timing Setting Window 

Figure 6.5  Set Timer Dialog Box 



Section 6   Using the Simulator Debugger 
 

6-5 
 

 

5. The input settings are displayed as entered. 

6. Click the [Save…] button to save the current settings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. You can add multiple settings as necessary. 

8. You can also toggle each setting, to enable or disable it, as necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6  Set Timer Dialog Box (After Settings Are Input) 

Figure 6.7  Set Timer Dialog Box (Multiple Settings) 



Section 6   Using the Simulator Debugger 
 

6-6 
 

6.1.3 Inserting a Virtual Interrupt at a Specified Cycle 

 Description: 

A virtual interrupt that occurs at a specified cycle can be set up in the [I/O Timing Setting] window. 

 

 How to set up: 

1. From the menu, choose [View -> CPU -> I/O Timing Setting] to display the [I/O Timing Setting] 
window. 

2. Either click the data settings icon, or right-click and choose [Setup] from the menu displayed. 

 

 

 

 

 

 

 

 

 

 

 

3. Select [Set a virtual interrupt], and then click the [Next>] button. 

 

 

 

 

 

Figure 6.8  I/O Timing Setting Window 

Figure 6.9  Setting a Virtual Interrupt 



Section 6   Using the Simulator Debugger 
 

6-7 
 

 

4. For the timing at which the interrupt is to occur, select [Cycle]. 

5. Set the start cycle, end cycle, vector, and priority, and then click the [Next>] button. 

 

 

 

 

 

 

 

 

 

 

 

 

6. Position the mouse pointer at the cell of the desired cycle at which you would like to set a virtual 
interrupt, and left click to set an interrupt to occur. 

7. Once all interrupts to occur are set, click the [Next>] button. 

 

 

 

 

Figure 6.10  Setting a Cycle and Vector 

Figure 6.11  Setting Interrupts to Occur 



Section 6   Using the Simulator Debugger 
 

6-8 
 

8. Save the I/O script file, as it is modified automatically. 

 

 

 

 

 

 

 

 

 

 

 

9. The I/O script file is as follows. 

 

 

 

; IOSCRIPT FILE FOR I/O WINDOW (INT WAITC) 
{ 
cycle 1001 
int 13 , 7 
waitc 31 
int 13 , 7 
waitc 20 
int 13 , 7 
waitc 12 
int 13 , 7 
} 

Figure 6.12  Save Dialog Box 



Section 6   Using the Simulator Debugger 
 

6-9 
 

 

6.1.4 Inserting a Virtual Interrupt When an Instruction at a Specified Address Is 
Executed 

 Description: 

A virtual interrupt that occurs when an instruction at a specified address is executed can be set up in the 
[I/O Timing Setting] window. 

 

 How to set up: 

1. Perform steps 1 to 3 in 6.1.3 Inserting a Virtual Interrupt at a Specified Cycle, to display a dialog 
box for setting up a virtual interrupt. 

2. For the timing at which the interrupt is to occur, select [Execution address]. 

3. Set the execution address, vector, and priority, and then click the [Next>] button. 

 

 

 

 

 

 

 

 

 

 

4. Set the number of times the instruction at the execution address is to be executed for the virtual 
interrupt to occur. Position the mouse pointer at the cell of the desired execution count, and left 
click to set the interrupt to occur. 

5. Once all interrupts to occur are set, click the [Next>] button. 

 

 

 

 

 

 

Figure 6.13  Setting the Execution Address and Vector 

Figure 6.14  Setting Interrupts to Occur 



Section 6   Using the Simulator Debugger 
 

6-10 
 

6. Save the I/O script file, as it is modified automatically. 

 

 

 

 

 

 

 

 

 

 

7. The I/O script file is as follows. 

 

 

 

; IOSCRIPT FILE FOR I/O WINDOW (INT ISFETCH) 
{ 
pass #isfetch:0x3f0 , 2 
int 13 , 7 
pass #isfetch:0x3f0 , 31 
int 13 , 7 
pass #isfetch:0x3f0 , 19 
int 13 , 7 
} 

Figure 6.15  Save Dialog Box 



Section 6   Using the Simulator Debugger 
 

6-11 
 

 

6.2 Using the Virtual Port Input/Output Function 

6.2.1 Entering Data by Button Click 

 Description: 

A virtual port input can be generated manually by clicking a button. 

Specify the address or the bit symbol for the button. 

 

 How to create a button for generating a virtual port input manually: 

1. Place a button in the GUI window. For details, in 6.1.1 Inserting a Virtual Interrupt by Button Click, 
see steps 1 to 3. 

2. For the button type, select [Input]. 

3. For the type, select [Address], [Address & Bit No.], or [Bit Symbol]. 

4. If [Address] is selected, specify the address, data, and data size. 

 

 

 

Figure 6.16  Button Settings 



Section 6   Using the Simulator Debugger 
 

6-12 
 

5. If [Address & Bit No.] is selected, set the address and bit number if no mask is to be used on a bit 
basis. If a mask is to be used on a bit basis, specify the address, data, data size, and mask value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. If [Bit Symbol] is selected, set the bit symbol and the value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. When the button is clicked, the value of the specified address or bit symbol is entered. 

Figure 6.17  Button Settings 

Figure 6.18  Button Settings 



Section 6   Using the Simulator Debugger 
 

6-13 
 

 

6.2.2 Entering Data from a Virtual Port When a Specified Address Is Read 

 Description: 

Input that occurs from a virtual port when a specified address is read can be set up in the [I/O Timing 
Setting] window. 

 

 How to set up: 

1. From the menu, choose [View -> CPU -> I/O Timing Setting] to display the [I/O Timing Setting] 
window. 

2. Either click the data settings icon, or right-click and choose [Setup] from the menu displayed. 

 

 

 

 

 

 

 

 

 

 

 

3. Select [Set a virtual input port], and click the [Next>] button. 

 

 

Figure 6.19  I/O Timing Setting Window 

Figure 6.20  Setting the Processing Type 



Section 6   Using the Simulator Debugger 
 

6-14 
 

4. Set the data input timing to [Read access]. 

5. In the [Input address] field, use a hexadecimal number to enter the address for which virtual port 
input is to be performed. 

6. In the [Read address] field, use a hexadecimal number to enter a memory address (virtual port input 
is performed when read access occurs for the memory address specified here). 

7. When the same address is used for the input address and read address, the next piece of data is 
referenced when the address is accessed. 

8. Click the [Next>] button. 

 

 

 

 

 

 

 

 

 

 

 

 

9. Set the data entered from the virtual input port. Position the mouse pointer at the cell of the desired 
read access occurrence count for setting the data, and double-click the left button to display the 
input console, and use a hexadecimal number to input the data. 

10. Once the data is input, click the [Next>] button. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21  Read Access Settings 

Figure 6.22  Input Data Settings 



Section 6   Using the Simulator Debugger 
 

6-15 
 

 

11. Save the I/O script file, as it is modified automatically. 

 

 

 

 

 

 

 

 

 

 

12. The I/O script file is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

; IOSCRIPT FILE FOR I/O WINDOW (SET ISREAD) 
{ 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x68 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x65 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x6c 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x6c 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x6f 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x21 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x21 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0xa 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x0 
pass #isread:0x3f0 , 1 
set [0x3f0] = 0x0 
} 

Figure 6.23  Save Dialog Box 



Section 6   Using the Simulator Debugger 
 

6-16 
 

13. The following code is an example of virtual port input. 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include <stdio.h> 
char *PORT_IN; 
int i; 
char buf[10]; 
 
void main(void) 
{ 

 PORT_IN = (char *)0x3f0;  → Address specified in [Input address]  
or [Read address] 

 for(i=0; i<10; i++){    → for statement 

  buf[i] = *PORT_IN;   → Next piece of data referenced  
when read occurs 

  if(buf[i] == '¥0')   → 0x00 is used as the end code 
   break; 
 } 
 

 printf("%s", buf);    → Outputs the input data to the standard output
 
} 



Section 6   Using the Simulator Debugger 
 

6-17 
 

 

6.2.3 Entering Data from a Virtual Port at a Specified Cycle 

 Description: 

Data entry from a virtual port input at a specified cycle can be set up in the [I/O Timing Setting] window. 

 

 How to set up: 
1. The data settings dialog box is displayed from the [I/O Timing Setting] window. Perform steps 1 to 

3 in 6.2.2 Entering Data from a Virtual Port When a Specified Address Is Read. 
2. Set the data input timing to [Cycle]. 
3. In the input address field, use a hexadecimal number to enter the address for which virtual port 

input is to be performed. 
4. Set the start cycle and end cycle, and then click the [Next>] button. 
 

 

 

 

 

 

 

 

 

 

 

5. Set the data entered from the virtual input port. Position the mouse pointer at the cell of the desired 
read access occurrence count for setting the data, and double-click the left button to display the 
input console, and use a hexadecimal number to input the data. 

6. Once the data is input, click the [Next>] button. 

 

 

Figure 6.24  Cycle Settings 

Figure 6.25  Input Data Settings 



Section 6   Using the Simulator Debugger 
 

6-18 
 

7. Save the I/O script file, as it is modified automatically. 

 

 

 

 

 

 

 

 

 

 

The I/O script file is as follows. 

 

 

 

 

 

 

 

 

; IOSCRIPT FILE FOR I/O WINDOW (SET WAITC) 
{ 
cycle 1001 
set [0x3f0] = 0x5a 
waitc 22 
set [0x3f0] = 0xa0 
} 

Figure 6.26 Save Dialog Box 



Section 6   Using the Simulator Debugger 
 

6-19 
 

 

6.2.4 Entering Data from a Virtual Port When a Virtual Interrupt Occurs 

 Description: 

A port input that occurs with a virtual interrupt can be set up in the [I/O Timing Setting] window. 

 

■ How to set up: 

1. The data settings dialog box is displayed from the [I/O Timing Setting] window. Perform steps 1 to 
3 in 6.2.2 Entering Data from a Virtual Port When a Specified Address Is Read. 

2. Set the data input timing to [Interrupt]. 
3. In the [Input address] field, use a hexadecimal number to enter the address for which virtual port 

input is to be performed. 
4. Specify the vector of the interrupt to be monitored, and click the [Next>] button. 
 

 

 

 

 

 

 

 

 

 

 

5. Set the data entered from the virtual input port. Position the mouse pointer of the cell of the desired 
read access occurrence count for setting the data, and double-click the left button to display the 
input console, and use a hexadecimal number to input the data. 

6. Once the data is input, click the [Next>] button. 
 

 

 

 

 

 

 

 

 

 

Figure 6.27  Interrupt Settings 

Figure 6.28 Input Data Settings 



Section 6   Using the Simulator Debugger 
 

6-20 
 

Save the I/O script file, as it is modified automatically. 

 

 

 

 

 

 

 

 

 

 

7. The I/O script file is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

; IOSCRIPT FILE FOR I/O WINDOW (SET ISINT) 
{ 
pass #isint:13 , 1 
set [0x3f0] = 0x68 
pass #isint:13 , 1 
set [0x3f0] = 0x65 
pass #isint:13 , 1 
set [0x3f0] = 0x6c 
pass #isint:13 , 1 
set [0x3f0] = 0x6c 
pass #isint:13 , 1 
set [0x3f0] = 0x6f 
pass #isint:13 , 1 
set [0x3f0] = 0x21 
pass #isint:13 , 1 
set [0x3f0] = 0x21 
pass #isint:13 , 1 
set [0x3f0] = 0xa 
pass #isint:13 , 1 
set [0x3f0] = 0x0 
pass #isint:13 , 1 
set [0x3f0] = 0x0 
} 

Figure 6.29 Save Dialog Box 



Section 6   Using the Simulator Debugger 
 

6-21 
 

 

6.2.5 Checking Data Output to a Virtual Output Port 

■ Description: 

Data output to a virtual output port can be checked from the [I/O Timing Setting] window and Output 
Port window. 

 

(1) [I/O Timing Setting] window 

1. From the menu, choose [View -> CPU -> I/O Timing Setting] to display the [I/O Timing Setting] 
window. 

2. Either click the data settings icon, or right-click and choose [Setup] from the menu displayed. 

 

 

 

 

 

 

 

 

 

 

 

3. Select [Set a virtual port output], and click the [Next>] button. 

 

 

Figure 6.30 I/O Timing Setting Window 

Figure 6.31  Selecting the Processing Type 



Section 6   Using the Simulator Debugger 
 

6-22 
 

4. Set the output address, and click the [Next>] button. 

 

 

 

 

 

 

 

 

 

 

 

5. A dialog box is displayed, allowing you to specify the I/O script file to which the virtual port output 
results are to be saved. Specify a file name, and save the file. 

 

 

 

 

 

 

 

 

 

 

6. The following code is an example of virtual port output. 

 

 

 

 

 

 

 

 

#include <stdio.h> 
char *PORT_OUT; 
static int i; 
char buf[10]; 
 
void main(void) 
{ 

 PORT_OUT = (char *)0x3f1;    → Address specified for the output address
 

 sprintf(buf, “hello!!”);    → Data output 
 

 for(i = 0; i < 10; i++) {    → for statement 

  *PORT_OUT = buf[i];     → Output is performed for the port 

  if(buf[i] == '¥0')     → 0x00 is used as the end code 
   break; 
 } 
 
} 

Figure 6.32  Setting the Output Address 

Figure 6.33 Save Dialog Box 



Section 6   Using the Simulator Debugger 
 

6-23 
 

 

7. The [I/O Timing Setting] window for the output results is as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. When the code in step 6 is executed, the I/O script specified in step 5 is as follows. 

 

 
 ; IOSCRIPT FILE FOR I/O WINDOW (SET WAITC) 
{ 
waitc 1145 
set [0x3f1] = 0x68 
waitc 30 
set [0x3f1] = 0x65 
waitc 30 
set [0x3f1] = 0x6c 
waitc 30 
set [0x3f1] = 0x6c 
waitc 30 
set [0x3f1] = 0x6f 
waitc 30 
set [0x3f1] = 0x21 
waitc 30 
set [0x3f1] = 0x21 
waitc 30 
set [0x3f1] = 0x0 
 
} 

Figure 6.34  I/O Timing Setting Window 



Section 6   Using the Simulator Debugger 
 

6-24 
 

(2) Output Port window 

1. From the menu, choose [View -> CPU -> Output Port] to display the [Output Port] window. 

2. Either click the port settings icon, or right-click and choose [Set…] from the menu displayed. 

 

 

 

 

 

 

 

 

 

 

 

 

3. The port settings dialog box is displayed. 

4. Select [Address], and enter a label or address. 

5. Click the [OK] button to complete the settings. 

 

 

 

 

 

 

Figure 6.35  Output Port Window 

Figure 6.36  Port Settings 



Section 6   Using the Simulator Debugger 
 

6-25 
 

 

6. When output is performed to the specified address while the program is running, the contents 
output to the port are displayed in the [Output Port] window. 

 

 

 

 

 

 

 

 

 

 

 

 

7. Click the log start icon to output also to a log file the contents output to the port. 

 

 

Figure 6.37  Output Port Window 



Section 6   Using the Simulator Debugger 
 

6-26 
 

6.3 Using a Virtual LED or Label to Check the Memory Contents 

■ Description: 

The color of a virtual LED or displayed text of a label can be changed in real-time, according to the 
contents of the memory being monitored. 

 

■ How to check the memory contents by using a virtual LED or label: 

1. From the menu, choose [View -> Graphics -> GUI I/O] to display the GUI window. 

2. Either click the LED creation icon or label creation icon, or right-click and choose [Create LED] or 
[Create Label] from the menu displayed. Then, place the virtual LED or label. 

 

 

 

 

 

 

 

 

 

 

 

3. Click the placed object to display the settings window. 

 

 

 

Figure 6.38  GUI Window 

Figure 6.39  GUI Window (After Placement) 



Section 6   Using the Simulator Debugger 
 

6-27 
 

 

4. Set the address, and select either [Bit] or [Data] for the data type. 

5. For a virtual LED, set the display color. For a label, set the displayed string. 

6. For the [Bit] data type, select either [Positive] (display color 1 or displayed string 1 is used when 
the condition evaluates to positive) or [Negative] (display color 1 or displayed string 1 is used 
when the condition evaluates to negative). 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. The following is a code example. In this case, the virtual LED and label change by referencing the 
0 bit and 1 bit of an integer from 0 to 200. 

 

 

 

 

 

 

 

 

 

void main(void) 
{ 
 for ( i = 0; i < 200; i++){ 
   TEST_LABEL = i; 
   TEST_LED = i; 
   while ( NEXT != 1); 
   NEXT = 0; 
 } 
} 

Figure 6.40  Set LED Dialog Figure 6.41  Set Label Dialog 



Section 6   Using the Simulator Debugger 
 

6-28 
 

8. For the [Data] data type, enter the data corresponding to Display 1 and Display 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. When the following code is executed with the settings in step 8, the operations are the same as 
those in step 7. 

 

 
void main(void) 
{ 
 for ( i = 0; i < 200; i++){ 
   TEST_LABEL = ((i >> 1) & 1) ? 1 : 2;  
   TEST_LED = ( i & 1) ? 1 : 2; 
   while ( NEXT != 1); 
   NEXT = 0; 
 } 
} 

Figure 6.42  Set LED Dialog Figure 6.43  Set Label Dialog 



Section 6   Using the Simulator Debugger 
 

6-29 
 

 

6.4 Using printf for Debugging 

 Description: 

The contents output via printf in the source code can also be output to the [Output Port] window and log 
file. 

 

 How to output: 

1. From the menu, choose [View -> CPU -> Output Port] to display the [Output Port] window. 
2. Either click the port settings icon, or right-click and choose [Set…] from the menu displayed. 
 

 

 

 

 

 

 

 

 

 

 

 

3. The port settings dialog box is displayed. 
4. Select [printf], and then [UART1]. 
5. Click the [OK] button to complete the settings. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.44 Output Port Window 

Figure 6.45  Port Settings 



Section 6   Using the Simulator Debugger 
 

6-30 
 

6. When printf is used for output while the program is running, the contents output to the port are 
displayed in the [Output Port] window. The output for when the following code is executed is 
shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Click the log start icon to output also to a log file the contents output to the port. 

 

Figure 6.46  Output Port Window 

for(i = 0; i < 10; i++) { 
  : 
#ifdef DEBUG 
  printf ( "i=%d¥n",i); 
#endif 
  : 
} 



Section 6   Using the Simulator Debugger 
 

6-31 
 

 

6.5 Using I/O Scripts 

 Description: 

Settings for virtual port input and virtual interrupts can be specified in script format, in files. Such scripts 
are called I/O scripts, and the files in which they exist are called I/O script files. Although I/O script files 
can be created automatically using the [I/O Timing Setting] window, they can also be edited directly, for 
even more flexibility in settings. For example, the following kinds of settings can be performed outside 
of the [I/O Timing Setting] window. 

• If you want to generate a cyclic virtual interrupt like timer interrupts, you can use the while 
statement to specify a repetition of virtual interrupt generation 

• You can specify that the priority levels set in the interrupt control register's interrupt priority level 
select bits be referenced to resolve the interrupt priority of virtual interrupts generated. 

• As conditions for entering virtual port inputs or generating virtual interrupts, you can specify a 
combination of program fetch, memory access for read/write, or memory comparison. 

 

 Method for using an I/O script file. 

1. Use a text editor to create an I/O script file in advance. Set the file extension to ios. 

2. In the [I/O Timing Setting] window, either click the import icon, or right-click and choose [Load] 
from the menu displayed to display the dialog box for importing I/O script files. 

3. Select the I/O script file to be imported. 

 

 

 

 

Figure 6.47  Load I/O Script File Dialog Box 



Section 6   Using the Simulator Debugger 
 

6-32 
 

 Example definition for the timer A0 timer mode 

The procedure in the following example is an example definition of the timer A0 timer mode. 

In this example, the timer A0 interrupt occurs every divide-by-ratio (number of cycles) 
specified for timer A0. The value specified in the interrupt control register is referenced to 
determine the priority of this timer interrupt. 

 

 

 

 

 

 

 

 

 

 

 

 

■ Example definition for a virtual port input in sync with a cycle 

The procedure in the following example is an example definition for a virtual port input in 
sync with a cycle. 

In this example, virtual port input is performed when 5000 cycles are executed in the program. 
The [I/O Timing Setting] window can only be used to set virtual port input on a byte basis, but 
the I/O script file can be used to set virtual port input on a word or long word basis. 

 

 

 

 

 

 

 

; Virtual interrupt example 

{           → Procedure start 

while(1){        → while statement 

  if([0x380].b & 0x01) {  → Checks timer A0's count start flag 

   waitc[0x386].w+1   → Waits before I/O script execution, for the number
            of cycles for the frequency set for timer A0 

   int 21,[0x55] & 0x7 → Makes timer A0 interrupt occur 
            (The interrupt control register is referenced 

to determine priority) 
  } else { 

   waiti 100     → Waits before I/O script execution,  
for 100 instructions 

  } 
} 

}

; Virtual port input example 

{            → Procedure start 

 waitc 5000        → Waits before I/O script execution, 
for 5000 cycles 

 set[0x3e0] = 0x34      → Inputs 0x34 to the 0x3e0 address 
 waitc 5000 

 set[0x3e0].w = 0x4126    → Inputs 2-byte data 0×4126 from  
the 0x3e0 address 

}            → Procedure end 



7-1 

Section 7. MISRA C 

7.1 MISRA C 

7.1.1 What Is MISRA C? 

MISRA C refers to the usage guidelines for the C language that were issued by the Motor Industry 
Software Reliability Association (MISRA) in 1998, as well as the C coding rules standardized by those 
guidelines. The C language itself is very useful, but suffers from some particular problems. The MISRA 
C guideline divides these problems into five types: programmer errors, misconceptions about the 
language, unintended compiler operations, errors at execution, and errors in the compiler itself. The 
purpose of MISRA C is to overcome these problems, while promoting safe usage of the C language. 
MISRA C contains 127 rules of two types: required and advisory. Code development should aim to 
conform to all of these rules, but as this is sometimes difficult to accomplish, there is also a process to 
confirm and document times when the rule conformance is not followed. Compliance to various issues 
is also required separate from these rules, such as when software metrics need to be measured. 

7.1.2 Rule Examples 

This subsection introduces some actual MISRA C rules. Figure 7.1 shows Rule 62, that all switch 
statements shall contain a final default clause. This is categorized as a programmer error. In a switch 
statement, if the "default" label is misspelled as "defalt", the compiler will not treat this as an error. If 
the programmer does not notice this error, the expected default operation will never be executed. This 
problem can be avoided through the application of Rule 62. 

 
 

 

 

 

 

 

Figure 7.1 Rule 62 

Figure 7.2 shows Rule 46, that the value of an expression shall be the same under any order of 
evaluation that the standard permits. This is categorized as a misconception about the language. 
Namely, if ++i is evaluated first, the expression becomes 2+2, but if i is evaluated first, the expression 
becomes 2+1. Likewise, since no provision exists for the evaluation order of function arguments, if ++j 
is evaluated first, the expression becomes f(2,2), but if j is evaluated first, the expression becomes 
f(1,2). This problem can be avoided through the application of Rule 46. 

Example: 

 switch(x) { 

     ： 

 defalt:      Misspelled 

     err = 1; 

     break; 

 } 



7-2 

 

 
 

 

 

 

 

Figure 7.2 Rule 46 

Figure 7.3 shows Rule 38, that the right hand operand of a shift operator shall lie between zero and one 
less than the width in bits of the left hand operand. This is categorized as an unintended compiler 
operation. In ANSI, if the shift number of the bit-shift operator is a negative number or larger than the 
size of the object to be shifted, the calculation results are undefined. In Figure 7.3, if the shift number 
when us is shifted is not between 0 and 15, the results are undefined and the value will differ depending 
on the compiler. This problem can be avoided through the application of Rule 38. 

 
 

 

 

 

 

Figure 7.3 Rule 38 

Figure 7.4 shows Rule 51, that the evaluation of constant unsigned integer expressions should not lead 
to wrap-around. This is categorized as an error at execution. When the result of an unsigned integer 
calculation is theoretically negative, it is unclear whether a theoretically negative value is expected, or 
a result based on a calculation without the sign will suffice. This situation could lead to a malfunction. 
Also, the results of an addition calculation may cause an overflow, resulting in a very small value. This 
problem can be avoided through the application of Rule 51. 

 
 

 

 

 

Figure 7.4 Rule 51 

 
 
 
 
 
 

Example: 

 unsigned short us; 

 

  us << 16;      Undefined action 

  us >> -1       Undefined action 

Example: 

   if( 1UL - 2UL )      What is intended: -1 or 0xFFFFFFFF? 

 

   *(char*)(0xfffffffeUL + 2);     Results in a 0 address. 

Example: 

  i = 1; 

  x = ++i + i;       x = 2 + 2?  x = 2 + 1? 

 

  j = 1; 

  func(j, ++j);      func(1, 2)? func(2, 2)?



7-3 

7.1.3 Compliance Matrix 

With MISRA C, source code is checked for compliance with all 127 rules. In addition, a table as the 
one shown in Table 7.1 needs to be made, showing whether or not each rule is upheld. This is called a 
compliance matrix. Given the difficulty of visually checking all rules, we recommend that you use a 
static check tool. The MISRA C guideline also indicates such, stating that the use of a tool to adhere to 
rules is of utmost importance. As not every rule can be checked using such a tool, you will need to 
perform a visual review to check such rules visually. 

Table 7.1 Compliance Matrix 

Rule number Compiler Tool 1 Tool 2 Review (visual)

1 Warning 347    

2  Violation 38   

3   Warning 97  

4    Pass 

... ... ... ... ... 
 

7.1.4 Rule Violations 

Rule violations can consist of those that are known to be safe, and those that may have more effects. 
Rule violations such as the former should be accepted, but some degree of safety is lost when rule 
violations are accepted too easily. This is why MISRA C states a special procedure for accepting rule 
violations. Such violations require a valid reason, as well as verification that the violation is safe. As 
such, locations and valid reasons for all accepted rules are documented. So that violations are not 
accepted too easily, the signature of an individual with appropriate authority within the organization is 
added to such documentation after consultation with an expert. This means that when a rule that is the 
same as one already accepted is violated, it is deemed as an "accepted rule violation", and can be 
treated as accepted, without performing the above procedures again. Of course, such violations need to 
be reviewed regularly. 

7.1.5 MISRA C Compliance 

To encourage MISRA C compliance, code needs to be developed in compliance with the rules, and rule 
violation problems need to be resolved. To show whether code complies with the rules, documentation 
for the compliance matrix and accepted rule violations is needed, along with signatures for each rule 
violation. To prevent future problems, you should train programmers to make the most of the C 
language and tools used, implement policies regarding coding style, choose adequate tools, and 
measure software metrics of various kinds. Such efforts should be officially standardized, along with 
the appropriate documentation. MISRA C compliance requires more than just development of 
individual products according to the guidelines, but rather of the organization itself. 

 

 

 

 

 

 

 



7-4 

7.2 SQMlint 

7.2.1 What Is SQMlint? 

SQMlint is a package that provides the Renesas C compiler with the additional function for checking 
whether it conforms to the MISRA C rules. SQMlint statically checks the C source code, and reports 
the areas that violate the rules. SQMlint runs as part of the C compiler in the Renesas product 
development environment. SQMlint can be started simply by adding an option at compile-time, as 
shown in Figure 7.5. It in no way affects the code generated by the compiler. 

Table 7.2 lists the rules supported by SQMlint. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 SQMlint Positioning 

 

C source 

 Preprocessed C 
source 

Preprocessor

  

C compiler SQMlint 

Assembly source
Rule violation 

message 

Renesas C Compiler



7-5 

Table 7.2 Rules Supported by SQMlint 

Rule Test Rule Test Rule Test Rule Test Rule Test Rule Test

1  26 × 51 * 76 101  126 

2 × 27 × 52 × 77 102  127 

3 × 28  53 78 103  

4 × 29  54 * 79 104  

5  30 × 55 80 105  

6 × 31  56 81 × 106 * 

7 × 32  57 82 107 × 

8  33  58 83 108  

9 × 34  59 84 109 × 

10 × 35  60 85 110  

11 × 36  61 86 × 111  

12  37  62 87 × 112  

13  38  63 88 × 113  

14  39  64 89 × 114 × 

15 × 40  65 90 × 115  

16 × 41 × 66 × 91 × 116 × 

17 * 42  67 × 92 × 117 × 

18  43  68 93 × 118  

19  44  69 94 × 119  

20  45  70 * 95 × 120 × 

21 * 46 * 71 96 × 121  

22 * 47 × 72 * 97 × 122  

23 × 48  73 98 × 123  

24  49  74 99 124  

25 × 

 

50  

 

75 100 × 125 * 

 

 

 

 

 
: Testable  ×: Not testable  *: Testable with limitations 



7-6 

Table 7.3 Number of Rules Supported by SQMlint 

Rule category Number of testable rules 
(Supported by SQMlint / Total) 

Required 67/93 

Advisory 19/34 

Total 86/127 

 

7.2.2 Using SQMlint 

SQMlint start options can be set easily from the window for setting the High-performance Embedded 
Workshop Compile Options. Figure 7.6 shows the dialog box for specifying the High-performance 
Embedded Workshop options, in which [MISRA C rule check] should be selected from [Category]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6 High-performance Embedded Workshop Options Window 

Thus, SQMlint will start at compile-time. The following gives the meaning of each option: 

• [all]: Performs testing for all rules. 

• [apply]: Performs testing only for specified rules. 

• [ignore]: Performs testing for all rules other than those of the specified numbers. 

• [require]: Performs testing only for rules necessary according to the MISRA C rule. 

• [require_add]: Performs testing for all rules necessary according to the MISRA C rule, as well as 
for those of subsequent numbers only. 

• [require_remove]: Performs testing only for rules necessary according to the MISRA C rule, except 
for those of the specified numbers. 



7-7 

7.2.3 Viewing Test Results 

Test results can be output in the following three ways: 

(a) Standard error output 

Messages are output the same as the High-performance Embedded Workshop compile errors. Tag 
jumping can be performed, allowing source code to be corrected easily using the same operations 
as for compile errors. 

(b) CSV file 

A file format that can be read by spreadsheet software, allowing reviews to be performed more 
easily. 

(c) SQMmerger  

Displays both the source file and test results, as shown in Figure 7.7. 

 

 

 

 

 

 

 

 

 

Figure 7.7 SQMmerger 

 

 

 

 

 

 

 

 

 

 

 

 

 

          1 : void func(void); 

          2 : void func(void) 

          3 : { 

          4 : LABEL: 

            [MISRA(55) Complain] label ('LABEL') should not be used 

          5 : 

          6 : goto LABEL; 

            [MISRA(56) Complain] the 'goto' statement shall not be used 

         7 : } 



7-8 

7.2.4 Development Procedures 

Figure 7.8 shows how to perform development using SQMlint. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Development Procedure Using SQMlint 

(1) Collect all compile errors. SQMlint assumes that the C source code is valid. 

(2) Find errors detected by SQMlint. 

(3) Correct the errors that can be easily corrected. 

(4) Create a list of the locations of rule violations that require investigation, and perform a review. 

(5) Perform corrections for rules deemed unacceptable upon review. 

(6) Document rules deemed acceptable upon review, to leave a record. 

7.2.5 Supported compilers 

The following compilers are supported by SQMlint: 

• M3T-NC30WA, Version 5.20 Release 1 and later 

• M3T-NC308WA, Version 5.10 Release 1 and later 

• M3T-CC32R, Version 4.10 Release 1 and later 

Code completion

Compile and 
perform MISRA C test

Can be corrected 
quickly 

Correct 

Investigation 
necessary 

List of violation areas

Review source
code 

Unacceptable rule 
violations 

Correct 

Documentation 

Acceptable rule 
violations 



8-1 

Section 8. Frequently Asked Questions 

This chapter contains answers to questions often asked by users. 

8.1 C Compiler (M3T-NC308WA) 

8.1.1 Bit Fields 

 Question: 

How can I declare a bit field combining a 10-bit width, 11-bit width, and 3-bit width, without any 
empty bits (padding) between the fields? 

 Answer: 

By declaring the entire sequence of fields as the same type, where the type contains more bits than the 
sum of the bits in the fields, you can create packed bit fields with no empty bits. 

Example program: 
typedef struct { 
      unsigned long   BIT0_9   :10; 
      unsigned long   BIT10_20 :11; 
      unsigned long   BIT21_23 : 3; 
} BIT0_23; 

 

 

 



8-2 

8.1.2 Memory Management Functions 

 Question: 

How can I prevent functions such as MALLOC() and MEMCPY(), which are not needed for an 
application, from being linked in NCxxWA? 

 Answer: 

The MALLOC() and MEMCPY() functions are used to secure the HEAP area set using the 
"ncrt0.a30" and "sectxx.inc" startup programs. When not using memory management functions such 
as MALLOC() and MEMCPY(), specify the "-D__HEAP__=1" assembly option when assembling 
"ncrt0.a30" and "sectxx.inc". 

 



8-3 

8.1.3 -ONBSD Option 

 Question: 

What kind of optimization is suppressed by the compiler optimization option "–ONBSD"? Is it 
possible to perform more detailed settings for optimization suppressed by "–ONBSD"? 

 Answer: 

The following kinds of optimization are suppressed: 

(1) Optimization in which common expressions are factored (so that the same expression is not 
performed multiple times)  

(2) Optimization in which common instruction blocks are grouped (such as for branches to 
identical series of instructions) 

(3) Optimization in which per-byte storage to consecutive areas is performed by word 

(4) Optimization in which consecutive push operations for 1-byte constants are performed by 
word 

(5) Optimization in which consecutive shifts are grouped (such as turning b=a<<2; b<<=2; into 
b=a<<4;) 

(6) Optimization in which bit operations are grouped into OR and AND calculations 

(7) Optimization in which comparison operators in the for statements are moved to the end of the 
loop to reduce the number of times evaluation is performed)  

(8) Optimization in which condition-less branches to return statements are replaced with return 
(for NC308 only) 

(9) Optimization in which exponential calculations using an exponent of 2 are changed to shift 
operations 

(10) Optimization in which auto variables are automatically allocated to the register 

(11) Optimization in which constants are folded in 

 Note that these optimizations are not always applied, based on the code immediately before or 
after the corresponding location. 

There are no options to perform more detailed settings for optimization suppression. 

 

 



8-4 

8.1.4 Priority of Optimization Options 

 Question: 

When multiple optimization options are specified, with what priority are the options processed? 

Also, which takes priority: options that perform optimization, or options that suppress it? 

 Answer: 

When multiple optimization options are specified, those that take effect are as follows: 

(1) When multiple "-O1" to "-O5" options are specified, the last one specified takes effect. 

(2) When an "-Onumber" option and the "-OR" option are specified, both take effect. 

(3) When an "-Onumber" option and the "-OS" option are specified, both take effect. 

 Note that the "-OR" and "-OS" options cannot be specified together. 

For example, if both "-OR" and "-O1" are specified, -OR optimization is performed, but optimization 
suppressed by -O1 is not. 

When both options that perform optimization and options that suppress optimization are specified, 
the latter take priority, and optimization is performed based on the specified optimization suppression 
options. 

 

 

 



8-5 

8.1.5 Adding Functions to the Library 

 Question: 

How can I add a function to the compiler library? 

 Answer: 

You can add a function to the compiler library as shown in the following example, which is based on 
NC308WA. 

Compile the C source file to generate a relocatable file. 

To generate "new.r30": 

     >nc308 -c new.c 
 

Use librarian lb308 to add the relocatable file to the library. 

To add the "new.r30" file to the "nc308" library file: 

     >lb308 -a nc308lib.lib new.r30 
 

Note: 
For details about how to use lb308, see the documentation for AS308, which can be found in the 
nc308wa/manual directory, on the product CD-ROM. For Windows, this documentation is also 
installed during product installation, so you can also find it from the Windows [Start] menu. 

 



8-6 

8.1.6 Placing const Declarations in the ROM Section 

 Question: 

I thought that anything declared using const was placed in the ROM section, but with the following 
codes, it is placed in the data section. What should I do to have it placed in the ROM section? 

    const S_TBL *sp_tbl[]={ 
          p00,  /* pointer to the structure */ 
          p01,  /* pointer to the structure */ 
          p02,  /* pointer to the structure */ 
      }; 

 Answer: 

Code such as the above can be changed as follows to place sp_tbl in ROM: 

    S_TBL *const sp_tbl[]={ 
          p00,  /* pointer to the structure */ 
          p01,  /* pointer to the structure */ 
          p02,  /* pointer to the structure */ 
      }; 
 

Also, you can use the following to place p00, p01, and p02 in ROM, in addition to sp_tbl: 

    const S_TBL *const sp_tbl[]={ 
          p00,  /* pointer to the structure  */ 
          p01,  /* pointer to the structure  */ 
          p02,  /* pointer to the structure  */ 
      }; 
 
Note: 

When using the const declaration for a pointer, what is placed in ROM differs depending on 
the const position. 

For the following example, a, b, and c are placed in ROM: 

    const int *i={a,b,c}; 
 

For the following example, i is placed in ROM: 

    int * const i={a,b,c}; 
 



8-7 

8.1.7 Passing Parameters via Registers 

 Question: 

When are function parameters passed via registers? 

Also, what is the difference in size and speed when function parameters are passed via registers, as 
opposed to being stack-passed? 

 Answer: 

Function parameters are passed via registers under the following conditions: 

(1) A prototype declaration exists for the function, and the parameter type is stated at the time of the 
function call. 

(2) The prototype declaration does not use the … variable parameter. 

(3) The types of function parameters match that shown in the following table: 

For NC30: 

Parameter Parameter type Register used 

First parameter char type R1L register 

First parameter int type or near pointer type R1 register 

Second parameter int type or near pointer type R2 register 
 

For NC308: 

Parameter Parameter type Register used 

First parameter char type R0L register 

First parameter int type or near pointer type R0 register 
 

Also, passing parameters via registers is better in terms of both size and speed. 

 



8-8 

8.1.8 How Function Parameters are Passed 

 Question: 

Does the way in which function parameters are passed affect program portability? 

 Answer: 

If a prototype declaration exists for the function, the compiler decides how function parameters are 
passed. As such, the portability of the program is not affected. 

 



8-9 

8.1.9 Prototype Declarations 

 Question: 

Does the prototype declaration decide how function parameters are passed? 

 Answer: 

Prototype declarations not only decide how function parameters are passed, but also specify such 
properties as the parameter size. As a result, when a function is called for which no prototype 
declaration exists, there may be consistency issues with parameters, for functions existing in a 
separate file. To prevent such a problem, we recommend using the prototype declaration. 

 



8-10 

8.1.10 Member Placement in a Structured Bit Field 

 Question: 

I have defined a structured bit field in a C program, but when I compile the program, the order of the 
bit field members is changed. How can I prevent this? 

 Answer: 

The placement of members in a structured bit field is determined as follows: 

(1) "unpack" and "arrange" are not used in #pragma STRUCT#1. 

(2) If consecutive bit fields of the same type exist,the members are placed consecutively. 

(3) If bit fields of different types exist, and there is a previous bit field of the same type, the 
members are placed in succession next to this previous bit field. 

(4) If no previous bit field of the same type exists, the members are placed from the next address. 

(5) Members are not placed consecutively across non-bit-field members. 

To place members that meet the above conditions in the order in which they are specified, use one of 
the following countermeasures: 

Countermeasure 1: Enclose each bit field of a different type in its own struct { }. 

Countermeasure 2: Use the same type when declaring fields that you would like to place 
consecutively. 

   #1  This cannot be changed using options or #pragma STRUCT. 

The following is an example in which the order of members is changed, and examples for each of the 
above countermeasures. 

Example in which the member order is changed: 
struct tagData { 
    unsigned char   c0a :  5;  /* (1) */ 
    unsigned char   c0b :  3;  /* (2) */ 
    unsigned char   c1a :  6;  /* (3) */ 
    unsigned char   c1b :  2;  /* (4) */ 
    unsigned int    i2a : 10;  /* (5) */ 
    unsigned int    i2b :  6;  /* (6) */ 
    unsigned char   c4a :  3;  /* (7) */ 
    unsigned char   c4b :  5;  /* (8) */ 
    unsigned char   c5;        /* (9) */ 
    unsigned char   c6a :  5;  /* (10) */ 
    unsigned char   c6b :  3;  /* (11) */ 
} s; 

 

For the above code, members are placed as follows: 

(1), (2), (3), and (4) are placed consecutively. 

Since the type differs for (5) and (6), members of the same type, (7) and (8), are placed first. 

Since (9) is a non-bit-field member, (10) and (11) cannot continue from (7) and (8). 

(5) and (6) are placed from the address after (7) and (8), as their type is different. 

(9) is placed from the address after (5) and (6), as it is a non-bit-field member. 

(10) and (11) are placed from the address after (9). 



8-11 

Countermeasure 1: Enclose each bit field of a different type in its own struct { }. 
struct tagData { 
    struct { 
        unsigned char   c0a :  5;  /* (1) */ 
        unsigned char   c0b :  3;  /* (2) */ 
        unsigned char   c1a :  6;  /* (3) */ 
        unsigned char   c1b :  2;  /* (4) */ 
    } s1; 
    struct {    
        unsigned int    i2a : 10;  /* (5) */ 
        unsigned int    i2b :  6;  /* (6) */ 
    } s2; 
    struct {    
        unsigned char   c4a :  3;  /* (7) */ 
        unsigned char   c4b :  5;  /* (8) */ 
    } s3; 
    unsigned char   c5;            /* (9) */ 
    struct { 
        unsigned char   c6a :  5;  /* (10) */ 
        unsigned char   c6b :  3;  /* (11) */ 
    } s4; 
} s; 
 
 Note that areas referencing this structure need to be changed. 

Before: s.c0a = 1; 

After: s.s1.c0a = 1; 

 

Countermeasure 2: Use the same type when declaring fields that you would like to place 
consecutively. 

struct tagData { 
    unsigned int    c0a :  5;  /* (1) */ 
    unsigned int    c0b :  3;  /* (2) */ 
    unsigned int    c1a :  6;  /* (3) */ 
    unsigned int    c1b :  2;  /* (4) */ 
    unsigned int    i2a : 10;  /* (5) */ 
    unsigned int    i2b :  6;  /* (6) */ 
    unsigned int    c4a :  3;  /* (7) */ 
    unsigned int    c4b :  5;  /* (8) */ 
    unsigned char   c5;        /* (9) */ 
    unsigned char   c6a :  5;  /* (10) */ 
    unsigned char   c6b :  3;  /* (11) */ 
} s; 
 

Members (1) to (8) and (10) to (11) are placed consecutively. 

Using this method may increase the amount of code slightly. 

 



8-12 

8.1.11 Increment and Decrement Operators 

 Question: 

I have programmed the C code shown in (1). 

When looking at the generated code, it appears that the variable x is compared to 5 before it is 
incremented. To have the variable x compared to 5 after it is incremented, do I need to change this 
code to something like that shown in (2)? 

(1)   if (x++ == 5){ 
         aaasub(); 
     } 
(2)   x++; 
     if (x ==5){ 
         aaasub(); 
     } 

 Answer: 

There are two ways to use the ++ increment operator and -- decrement operator: before the variable, 
and after the variable. 

After the variable: increment/decrement is performed after the variable is used. 

Before the variable: increment/decrement is performed before the variable is used. 

Since the increment operator used in your program is placed after the variable, the variable x is 
compared to 5 before increment is performed. To achieve the expected results, place the increment 
operator before the variable as follows: 

      if (++x == 5){ 
         aaasub(); 
      } 
 



8-13 

8.1.12 Placing External Variables 

 Question: 

When writing a C program, how can I have external variables placed in the order in which they are 
defined? 

 Answer: 

With the standard NCxxWA, external variables are placed as grouped into each of the following 
attributes: 

 

 

 

 

 

 

 

 

 

 

 

You cannot group initialized and uninitialized data together, but you can specify the "-fno_even" 
command option at compile time to group even-sized data and odd-sized data, placing external 
variables as follows: 

 

 

 

 

 

 

Initialized 

Definition order Initialized 

Uninitialized 

Uninitialized 

Even-sized data 

Odd-sized data 

Even-sized data 

Odd-sized data 

Even-sized data 

Odd-sized data 

Even-sized data 

Odd-sized data 

Definition order 

Definition order 

Definition order 

Definition order 

Definition order 

Definition order 

Definition order 

near 

far 

Initialized 

Initialized 

Uninitialized 

Uninitialized 

Definition order 

Definition order 

Definition order 

Definition order 

near 

far 



8-14 

8.1.13 Placing an Array in the far Area 

 Question: 

What declaration in NC30WA should I use to place an array in the "far" area, but the pointer that 
references it in the "near" area? 

 Answer: 

As an example, use a declaration like the following to declare a 64-byte array of the short type: 

/* (1) declaring the array itself */ 
 
    short far data[64]; 
 
 /* (2) declaring the pointer to the array */ 
 
    short far *pdata; 
 

The pointer in (2) is stored in the "near" area as shown below. This pointer points to the "far" area. 

near ----------- 
          -- pdata -- <-- 4 bytes (the start address of the array is stored) 

          --------- 

 

 
You can also change the area in which the pointer to the array is placed, and the area to which the 
pointer points, as shown below. 

short * far pdata 
In the above, pdata is placed in the "far" area, and that to which it points is placed in the "near" 
area. If "far" is omitted, this is handled as "near". 

short far * far pdata 
In the above, pdata is placed in the "far" area, and that to which it points is also placed in the "far" 
area. 

short far * pdata 
In the above, pdata is placed in the "near" area, and that to which it points is also placed in the 
"far" area. 

short * pdata 
In the above, pdata is placed in the "near" area, and that to which it points is also placed in the 
"near" area. 

 

 



8-15 

8.1.14 Placing a Function at a Fixed Address 

 Question: 

How can I place the functions in a C program at an absolute (fixed) address? 

 Answer: 

NC30WA places functions in the program section. As such, to place functions in an absolute address, 
specify the location of the program section. 

Since addresses in the program section come after the .section program line in the "sect30.inc" file, 
they can be specified using the .org pseudo-instruction. 

To place a function at the 10000H address, specify the following in the "sect30.inc" file: 
     .section  program 
     .org   10000H 
 

To place each function at a separate address, use #pragma SECTION for each function to create a 
section with a name other than that of the program section, and change the code so that the address of 
the section is specified. 

To place the func() function in a section called program1, and place the section at 20000H: 
(1) You can specify the name of the section in which to place the function as follows: 

      #pragma SECTION program program1 
      func() 
      { 
      } 

 
(2) In the "sect30.inc" file, specify the section address as follows: 

      .section  program1 
      .org   20000H 

 



8-16 

8.1.15 Specifying an Absolute Address Using #pragma ADDRESS 

 Question: 

How can I use #pragma ADDRESS to specify the same absolute address as the following? 

#define AAA (*(volatile unsigned char *)0x000406) 

 Answer: 

To use #pragma ADDRESS to specify 0x0406 as shown above, use the following: 

#pragma ADDRESS AAA 000406h 
unsigned char AAA; 

 
Note that the variables declared by #pragma ADDRESS have a volatile attribute without its 
specification. 

 
 
 



8-17 

8.1.16 Using #define to Define a String 

 Question: 

When I use the preprocessing command #define to define a numerical value in a string, why do 
expressions using the defined string return unexpected results? 

For example, in the following, the value of cul is not 0x04AAAA, as I would expect. 

     #define      V1       0x040000 
     #define      V2       0x0AAAA + V1 
 
     cul = (WORD *)V2 

 Answer: 

For the above program, the expression for the results of the #define expansion are as follows (note 
that #define expansion involves only string replacement): 

cul = ( WORD *)0x0AAAA+ 0x040000; 
 

In this expression, (WORD *) is casted only to 0x0AAAA, to which 0x040000 is added. Since this 
ends up being added to the pointer to int, it becomes 0x80000. 
 
To obtain the expected value, enclose in parentheses the expression defined by #define, as follows: 

  #define      V2       (0x0AAAA + V1) 
 

 



8-18 

8.1.17 Types of Bit Field Members 

 Question: 

When executing the following program, I thought that the long-type variable l would be substituted 
with -1, but instead it was replaced with 0xF (15). How can I set it to -1? 

 void main( void ) 
 { 
     struct 
     { 
         short r : 10 ; 
         short i : 4 ; 
         short s : 2 ; 
     } buf ; 
     long l ; 
 
 
     buf.i = -1 ; 
     l = (long)buf.i ; 
 } 

 Answer: 

The bit field member is processed with unsigned as its type. As a result, variables with large types are 
zero-extended when stored or transferred. 

As shown below, to handle such variables as sign extensions, declare the type of the bit field member 
explicitly, as "signed". 

    struct 
    { 
        signed short r : 10 ; 
        signed short i : 4 ; 
        signed short s : 2 ; 
    } buf ; 

 



8-19 

8.1.18 Duplicate Variable Definitions 

 Question: 

In a C program, if a variable of the same name and type is declared more than once in the same file, 
will an error occur? 

 Answer: 

No error or warning will occur when a variable of the same name is declared more than once in the 
same file. 

This is due to the adoption of the following ANSI specification: 

Note: 
"As long as the type of variable allocated to a given does not change within the same file, any 
number of external declarations can exist for that name." 

No error occurs for the following: 
  int i; 
  int i=1; 
  
  main() 
  { 
  } 

 
A duplicate definition error occurs for the following: 

  int i; 
  char i; 
  
  main() 
  { 
  } 
 



8-20 

8.1.19 Prototype Declarations for a Function 

 Question: 

Why is the error message "function-name: value is undefined" output during linking, even though the 
function exists? 

 Answer: 

This happens when the function name on either the side calling the function or the side being called is 
_function-name, while the other side is $function-name. This is often due to the fact that no 
prototype declaration exists for the function, or the types of the parameters for the functions do not 
match. Check the prototype definition. 



8-21 

8.1.20 External References for Functions Without an extern Declaration 

 Question: 

Does a compiler error occur when a function performs an external reference without performing an 
extern declaration? 

 Answer: 

If no extern declaration (prototype declaration) exists, the ANSI specification dictates that the return 
value of the function is interpreted as an int value. As such, when you use the int type for an external 
reference, no error occurs. 

To detect functions that have no extern declaration (prototype declaration), specify "-Wno_prototype 
(-WNP)" or “-Wall" at compile-time. This will output a warning for any function without a prototype 
declaration. 



8-22 

8.1.21 Code Deletion During Optimization 

 Question: 

Why is no code output for expressions such as reading a port when an optimization option is used? 

 Answer: 

This is because the code is deleted as meaningless during optimization. For operations that have a 
purpose such as reading, use the volatile declaration to declare any variables. 



8-23 

8.1.22 Consolidating Bit Access 

 Question: 

Since consecutive bit access operations are consolidated into one operation, when an interrupt occurs 
during bit access, the program sometimes malfunctions. What should I do? 

 Answer: 

Sometimes malfunction occurs because consecutive bit calculations are consolidated into one 
calculation, due to optimization. To avoid such malfunction, you can suppress this kind of 
optimization by specifying the "-ONB (-Ono_bit)" option at compile time. 



8-24 

8.1.23 Placing a Library Function at a ROM Address 

 Question: 

How can I specify a ROM address at which to place a library function during linking? Also, is there a 
section for library functions so that I can specify section placement during linking? 

 Answer: 

Unfortunately, there is no section for library functions. 

To change the section of any library function, in the source program of the library function, specify 
the section name in the #pragma SECTION extension function. Both NC30WA and NC308WA come 
with the source for each library. 

At the start of the library function, add the following #pragma SECTION line. 

#pragma SECTION program library 
 

The name of the section in which the library function will be placed is "library". You can specify the 
section name as you wish. 

Then, after compiling and assembling the library function as you would for a regular function, place 
the "library" section at the intended address, and perform linking. 

Notes: 
#pragma SECTION cannot be used to change the name of a section for libraries in the 
assembler. Change .section program directly. 

The source for library functions is stored in src30¥lib(src308¥lib), in the NC30WA(NC308WA) 
installation directory, if selected as such during installation. 



8-25 

8.1.24 Processing for Negative Integer Calculations 

 Question: 

Regarding how processing is performed for the following calculations: 

(1) In what direction are the results of negative integer division using the / operator rounded? 

(2) What is the sign of the result of modulo operation using the % operator? 

(3) When a negative integer is bit-shifted using the >> operator, which is performed: an arithmetic 
shift (where the MSB becomes the sign bit) or a logical shift (where the MSB becomes 0)? 

 Answer: 

(1) The results of negative integer division using the / operator are rounded to 0. 

Expression Result 

(-10) / 3 -3 

(-10) % 3 -1 

10 / (-3) -3 

10 % (-3) 1 

(-10) / (-3) 3 

(-10) % (-3) -1 

 

(2) The sign of the result of modulo operation using the % operator is the sign of the dividend. 

Expression Result 

(-10) % 3 -1 

10 % (-3) 1 

(-10) % (-3) -1 

 
Note: 

If the "-fround_under_div(-fRUD)" option is specified, the sign of the divisor is used. 

(3) When a negative integer is bit-shifted using the >> operator, an arithmetic shift is performed, 
where the MSB becomes the sign bit. 



8-26 

8.1.25 int Type Sizes 

 Question: 

In the following program, why does the right-hand side of the aaa = (signed long)( BBB << CCC ); 
expression yield 0x0000f000? In VISUAL C++, it yields 0x0ffff000. 

Example program Generated assembly code 

#define BBB (unsigned short)0xffff 
#define CCC (unsigned char)12 
 
signed long aaa; 
 
test( void ) 
{ 
    aaa = (signed long)( BBB << CCC ); 
} 

_test: 
    mov.w       #0f000H,_aaa
    mov.w       #00000H,_aaa+2
    rts 

 

 Answer: 

The compiler processes the expressions in the above program in the following order: 

(1) BBB is converted to the int type. 

(if the former value can be expressed as the int type, signed int is used) 

(if the former value cannot be expressed as the int type, unsigned int is used) 

(2) Shift is performed with CCC. 

(3) The result is converted to the signed long type, and stored in aaa. 

Since NC30 and NC308 handle conversion to the int type in 16 bits, the expression aaa = (signed 
long)( BBB << CCC ); is processed as follows: 

(1) 0xffff -> 0xffff (this cannot be expressed as the int type, and is converted to the unsigned int 
type) 

(2) 0xffff<<12 -> 0xf000 

(3) Since 0xf000 has no sign, it remains 0x0000f000 even when casted to a signed long. -> aaa. 

The result is 0x0000f000. 

In NC30 and NC308, to have the result of the expression aaa = (signed long)( BBB << CCC ); be 
0x0ffff000, specify the code to cast the BBB variable instead of casting the shifted results to the 
signed long type. 

 
#define BBB (unsigned short)0xffff 
#define CCC (unsigned char)12 
 
signed long aaa; 
 
test( void ) 
{ 
    aaa = (signed long)BBB<<CCC; 
} 
 



8-27 

The following assembly code is generated when the above program is compiled. 

;## # C_SRC :     aaa =  (signed long)BBB << CCC; 
        mov.w    #0f000H,_aaa 
        mov.w    #00fffH,_aaa+2 

 

Note: 
VISUAL C++ handles the int type as 32 bits. 

As such, in VISUAL C++ the expression aaa = (signed long)( BBB << CCC ); is processed as 
follows: 

(1) 0xffff -> 0x0000ffff 

(2) 0x0000ffff << 12 -> 0x0ffff000 

(3) 0x0ffff000 -> aaa 

The result of this calculation is 0x0ffff000. 



8-28 

8.1.26 Controlling the enter Instruction 

 Question: 

With NC308WA Version 3.00 Release 1, the enter instruction is output at the beginning of functions. 
But since this is not output with Version 3.10 Release 2, stack parameters cannot be referenced with 
inline assembly code. Is there any way of controlling the enter instruction? 

 Answer: 

With NC308WA Version 3.10, optimization has been strengthened not to output unnecessary enter 
instructions. However, since processing within inline assembly code is not taken into account, when 
parameters and automatic variables are not referenced outside the range from #pragma ASM to 
#pragma ENDASM or other than asm(), the enter instructions are deemed unnecessary and not 
output. 

NC308WA supports the use of asm("... $$ or $@ ...", variable-name); to use inline assembly code to 
reference C variables. 

Since this method allows you to properly check from the compiler whether the value is used, you can 
generate enter instructions as necessary. If you use another method to reference C variables, 
operation may become unpredictable, or compatibility between versions may be lost. When using 
such a method to reference variables and parameters, do not set function return values. 

We recommend that you use code such as that in the following examples. 

Example 1: 
void memset(char *p, char c, unsigned short n) 
{ 
  asm(" PUSHM  A1,R0,R3   ");     // The registers used must be saved 
  asm(" MOV.L  $$[FB],A1  ", d); // Parameter d is transferred to A1 
  asm(" MOV.B  $$[FB],R0L ", c); // Parameter c is transferred to R0L 
  asm(" MOV.W  $$[FB],R3  ", n); // Parameter n is transferred to R3 
  asm(" SSTR.B            "); 
  asm(" POPM   A1,R0,R3   ");     // The registers used are restored 
} 
 

Example 2: 
void memset(char *p, char c, unsigned short n) 
{ 
  asm(" PUSHM  A1,R0,R3 ");    // The registers used must be saved 
  asm(" MOV.L  $@,A1    ", d); // Parameter d is transferred to A1 
  asm(" MOV.B  $@,R0L   ", c); // Parameter c is transferred to R0L 
  asm(" MOV.W  $@,R3    ", n); // Parameter n is transferred to R3 
  asm(" SSTR.B          "); 
  asm(" POPM   A1,R0,R3 ");    // The registers used are restored 
} 

 

For automatic variables, $$ is replaced with the offset from the FB register value. For external 
variables, symbols, or register variables, $$ is replaced with the register name. 

$@ is replaced with an operand indicating an automatic variable, external variable, or register 
variable. The type of variable corresponding to $@ is automatically determined by the compiler. 

Optimization may change the function parameters and automatic variables to register variables, but 
not variables specified using asm("$$ or $@",variable-name). As such, no situation exists where, for 
example, a $$ intended to be written for the offset from an automatic variable FB becomes a register 
variable, and is accidentally expanded to the register name. 



8-29 

8.1.27 Performance for the Floating-point Library 

 Question: 

What can you tell me about performance for the floating-point library? 

 Answer: 

Performance for the floating-point library is as follows: 

Measurement conditions 

(1)  Compiler used: M3T-NC30WA V.5.30 Release 02 

(2)  Emulator used: Compact emulator for the M16C/Tiny series (M30290T2-CPE) 

      Clock 20 MHz   High-speed mode 

Measurement results 

• Arithmetic operations 

 float double 
Addition (7.1+2.9) 33 μsec 37 μsec 
Subtraction (7.9-2.9) 35 μsec 40 μsec 
Division (3.5/0.5) 79 μsec 164 μsec 
Multiplication (7.5*10.2) 22 μsec 37 μsec 

 

• Mathematical functions 

acos(0.5) 9.718 msec 
asin(0.5) 10.682 msec 
atan(0.5) 7.984 msec 
atan2(1.5,0.5) 13.119 msec 
ceil(10.8) 0.104 msec 
cos(0.5) 2.775 msec 
cosh(0.5) 1.934 msec 
exp(10.4) 1.533 msec 
fabs(x) 0.010 msec 
fmod(10.5,1.5) 0.218 msec 
ldexp(10.4,3) 0.006 msec 
log(2.4) 4.587 msec 
log10(100.3) 5.295 msec 
pow(10.3,4.5) 7.061 msec 
sin(0.4) 3.047 msec 
sinh(0.6) 1.938 msec 
sqrt(100.1) 2.112 msec 
tan(0.5) 2.717 msec 
tanh(0.9) 1.966 msec 

 



8-30 

8.2 Linker 

8.2.1 "-LOC" Option for ln308 and ln30 

 Question: 

In what situations should I use the "-LOC" option for ln308 or ln30? 

 Answer: 

This option can be used for applications in which the program runs in RAM. In this case, the RAM 
address of the program running in RAM is defined using the "-ORDER" option. Then, the ROM 
address registering the program transferred to RAM is defined using the "-LOC" option. 

Note that the "-LOC" option functionality only registers the defined program at the specified address, 
and does not have any functionality to transfer the program to an address area during execution. 



8-31 

8.2.2 Warnings During Linking 

 Question: 

The warning "16-bits unsigned value is out of range 0 -- 65535. address='xxxx'" that is output during 
linking, does not occur when the RAM size is decreased. What is wrong? 

 Answer: 

The above warning is output when bit operations are output for areas not reachable by bit operations 
(outside of 0H to 1FFFH). The reason that decreasing the RAM size prevents the warning from being 
output is that variables in areas other than from 0H to 1FFFH are fit into the area from 0H to 1FFFH, 
and can be reached by bit operations. The address at which variables are placed cannot be determined 
at compile-time, as this is determined during linking. 

Perform the following to remove settings for outputting bit operations: 

(1) If -fbit (or -fB) is specified during compile-time, clear this specification. 

(2) If the corresponding variable is specified in #pragma BIT, clear this specification. 

 



8-32 

8.2.3 Changing a Start Address 

 Question: 

How can I convert a program for which the start address is coded as 0xFC0000 to the Motorola S 
format with a start address of 0x000000? 

Also, why doesn't the start address change when I run lmc308 as follows? 

>lmc308 -E 00 test.x30 
 

 Answer: 

lmc308 cannot change start addresses. The "-E" command option is for registering an execution start 
address, which is registered in digits 5 to 8 of the S8 record on the last line of the Motorola S format. 
However, keep in mind that this option cannot change the start address. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8-33 

8.3 Stk Viewer 

8.3.1 Stk Viewer Stack Size 

 Question: 

The stack size displayed in Stk Viewer was secured, but an overflow occurred nonetheless. Is the 
stack size displayed in Stk Viewer not sufficient? 

 Answer: 

The stack size displayed in Stk Viewer is for reference only. 

Stk, which is called by Stk Viewer, calculates the stack size based on stack information in the 
absolute module files output by the compiler, but since this size is only theoretical, it is not the actual 
size as calculated from the tracing the program. 

Also note that Stk does not take interrupt functions into account. 

To calculate the stack size with interrupt functions taken into account, add the stack size of the 
functions or assembly routines for which interrupts occur as displayed in Stk Viewer, to the stack size 
of the interrupt function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8-34 

 

8.4 SQMLint 

8.4.1 Selecting Test Rules 

 Question: 

Is there a way to select only the necessary rules from those that can be tested with SQMlint? 

 Answer: 

You can select specific rules to be tested, from those that can be tested with SQMlint. You can select 
these rules as follows: 

(1) Test all rules that can be tested with SQMlint. 

(2) Of the rules that can be tested with SQMlint, test only those deemed "required" by MISRA C. 

(3) Of the rules that can be tested with SQMlint, test all deemed "required", as well as those 
deemed "advisory" whose numbers are specified. 

(4) Of the rules that can be tested with SQMlint, test only those whose numbers are specified. 

For details about rules that can be tested with SQMlint and their numbers, in Chapter 7, see Table 7.2 
Rules Supported by SQMlint. 



8-35 

8.4.2 Outputting Report Files 

 Question: 

I want to compile multiple C source files while outputting the results, as checked with SQMlint, to a 
report file. How can I output a separate report file for each source file? 

 Answer: 

Use the High-performance Embedded Workshop or TM Embedded Workshop. 

 For High-performance Embedded Workshop: 

For M3T-NC30WA or M3T-NC308 WA: 

(1) Choose the [Options] menu, and then [Renesas M16C Standard Toolchain]. 

(2) In the [C] tab of the displayed dialog box, select [MISRA C Rule Check] for [Category]. 

(3) Set [[-r] Report file name:] as follows: 

$(CONFIGDIR)¥$(PROJECTNAME).csv 
 

For M3T-CC32R 

(1) Choose the [Options] menu, and then [Renesas M32R Standard Toolchain]. 

(2) In the [C] tab of the displayed dialog box, select [MISRA C Rule Check] for [Category]. 

(3) Set [-misra_report Report file name:] as follows: 

$(CONFIGDIR)¥$(PROJECTNAME).csv 
 

 For TM: 

For M3T-NC30 WA or M3T-NC308 WA: 

(1) Choose the [Project] menu, and then [Option Browser]. 

(2) Choose [CFLAGS], and then [Edit...]. 

(3) For the option change category, select [MISRA-C check option]. 

(4) Select the [–sqmlint] option, and set the parameter string as follows: 

-misra all -r $*.csv 
 

For M3T-CC32R 

(1) Choose the [Project] menu, and then [Option Browser]. 

(2) Choose [CFLAGS], and then [Edit...]. 

(3) For the option change category, select [MISRA-C check option]. 

(4) Select the [-misra_report] option, and set the parameter string as follows: 

$*.csv 
 

Note: 
When entering commands from the command line, specify the name of the report file for each 
compiled file, as follows: 

 
>nc308 -c test.c -sq -sqmlint "-misra all -r test.csv" 
 
In other words, compile one C source file for each command. 



8-36 

For example, when the following is executed on the command line, only the report results for 
test2.c are saved in the "report.csv" file: 

 
>nc308 test1.c test2.c -sq -sqmlint "-misra all -r report.csv" 

 



8-37 

8.4.3 Report Messages (1) 

 Question: 

When I specify the enum type for the parameter of a prototype declaration, and specify an 
enumerator as the actual parameter when calling the function, the following message is output even 
though they are of the same type. Why is this message output? 

Example C source: 
 
  enum E { A, B, C }; 
  void func1(enum E); 
 
  void func2() 
  { 
     func1(A); 
  } 
 

Message output: 

Rule 77 (Complaining) "parameter type shall be compatible with prototype, 
the 1st parameter" 

 Answer: 

The type for enumerators is int. 

Since SQMlint performs strict comparison for dummy parameters and their corresponding actual 
parameters, the enum E type and int type are treated as distinct, and the report message is output. 
Disregard any such messages. 



8-38 

8.4.4 Report Messages (2) 

 Question: 

When I specify an enumerator on both sides of the : ternary operator, and substitute the resulting 
return value with an enumeration variable, the following message is output even though they are of 
the same type. Why is this message output? 

Example C source: 
 
  enum E { A, B, C }; 
 
  void func(int i) 
  { 
      enum E e; 
      e = (i == 0) ? A : B; 
  } 
 

Messages output: 

Rule 43 (Complaining) "information loss conversion (from 'signed int' to 
'enum E') in assignment operation" 

Rule 29 (Complaining) "enum type object to which has not been assigned own 
enumerator" 

 Answer: 

When you specify enumerators for both sides of the : ternary operator, the operator returns a value of 
the int type. As such, this is the same as substituting an int-type constant for an enumeration variable, 
and the report message is output. Disregard any such messages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8-39 

8.5 High-performance Embedded Workshop 

8.5.1 Link Order for Files 

 Question: 

I want to create a project in the High-performance Embedded Workshop, but the links for the files 
end up being alphabetized by file name. How can I have the startup file (ncrt0.r30) linked first? 

 Answer: 

Perform the following: 

• For M3T-NC30WA Version 5.20 R1: 

(1) Choose the [Options] menu, and then click [Renesas M16C Standard Toolchain...]. 

(The [Renesas M16C Standard Toolchain] dialog box appears.) 

(2) Click the [Link] tab. 

(3) For [Category:], select [Input]. 

(4) For [Show entries for:], select [Relocatable files]. 

(5) Click the [Add] button. 

(The [Add Relocatable Files] dialog box appears.) 

(6) For [Relative to:], select [Configuration directory]. 

(7) For [File path:], enter "ncrt0.r30". 

(8) In the [Add Relocatable Files] dialog box, click the [OK] button. 

(9) In the [Renesas M16C Standard Toolchain] dialog box, click the [OK] button. 

This will allows you to link "ncrt0.r30" first. 

• For M3T-NC30WA Version 5.30 R1, M3T-NC308WA Version 5.20 R1, and M3T-NC8C Version 
5.30 R1: 

When a new project workspace is created, the file will automatically be linked first only if the name 
of the startup program is "ncrt0.a30". 

Otherwise, this can be accomplished as follows: 

(1) Choose the [Options] menu, and then click [Renesas M16C Standard Toolchain...]#1. 

(The [Renesas M16C Standard Toolchain] dialog box appears.) 

#1 
For M3T-NC308WA, this is [Renesas M32C Standard Toolchain...]. 

For M3T-NC8C, this is [Renesas R8C Standard Toolchain...]. 

(2) Click the [Link] tab. 

(3) From [Category:], select [Other]. 

Select the [Start-up program is linked to a head.] option to have the startup file linked first. 



8-40 

For startup programs whose file name is not "ncrt0.a30", use the first one of the above methods. 

Overview of the [Relocatable files] list: 

When files registered in the workspace are added to the [Relocatable files] list, they are linked 
before the files registered in the workspace. 

When files not registered in the workspace are added to the [Relocatable files] list, they are 
linked after the files registered in the workspace. 

Files added to the [Relocatable files] list are linked in list order. 



8-41 

8.5.2 Link Order for Relocatable Files 

 Question: 

How can I change the order in which relocatable files are linked? 

 Answer: 

Relocatable files are linked in the following order: 

(1) Files registered in both the workspace and the [Relocatable files] list are linked in the order of 
the [Relocatable files] list. 

(2) Files registered only in the workspace are linked in alphabetical order. 

(3) Files registered only in the [Relocatable files] list are linked in list order. 

Add files to the [Relocatable files] list as necessary. 



8-42 

8.5.3 Generating Motorola S Format Files 

 Question: 

How can I generate Motorola S format files? 

 Answer: 

Perform the following: 

(1) Choose the [Options] menu, and then click [Build Phase]. 

The [Build Phase] dialog box appears. 

(2) Click the [Build Order] tab. 

The order list of the build phase appears. 

  For M3T-NC30WA Version 5.20 Release 1, select [M16C Stype Converter]. 

  For M3T-NC30WA Version 5.30 Release 1; select [M16C Load Module Converter]. 

  For M3T-NC308WA Version 5.20 Release 1; select [M32C Load Module Converter]. 

  For M3T-NC8C Version 5.30 Release 1; select [R8C Load Module Converter]. 

  For M3T-CC32R, select [M32R Stype Converter]. 

(3) Click the [OK] button to close the dialog box. 

(4) Choose the [Options] menu, and then click [Renesas M16C Standard Toolchain...]#1. 

The [Renesas M16C Standard Toolchain] dialog box appears. 

  #1 
  For M3T-NC308WA, this is [Renesas M32C Standard Toolchain...]. 

  For M3T-NC8C, this is [Renesas R8C Standard Toolchain...]. 

  For M3T-CC32R, this is [Renesas M32R Standard Toolchain...]. 

(5) In the [Renesas M16C Standard Toolchain] dialog box, click the [Lmc] tab. 

The [Option Settings for Loading Module Converters] window appears. 

(6) Set the necessary options, and click the [OK] button to close the dialog box. 

This completes these settings. 

From now on, the loading module converter is executed at build-time. 



8-43 

8.5.4 Installing High-performance Embedded Workshop (1) 

 Question: 

I installed the version of the High-performance Embedded Workshop that comes with 
M3T-NC30WA, on a machine on which the High-performance Embedded Workshop environment 
was already installed. But even when I start the High-performance Embedded Workshop, M16C is 
not displayed as a toolchain. 

 Answer: 

When installing the version of the High-performance Embedded Workshop that comes with 
M3T-NC30WA, be sure to install it in the same directory as the already installed the 
High-performance Embedded Workshop, overwriting the previous installation. Also, since the 
High-performance Embedded Workshop environment needs to be installed before M3T-NC30WA, 
be sure to use the installer for the M3T-NC30WA compiler. 

For those using SHC Version 7 and H8C Version 5: 

Be sure to download and install the High-performance Embedded Workshop revisions for the 
updated compiler package from the following URL, and then install the M3T-NC30WA 
compiler: 

http://download.renesas.com/eng/mpumcu/upgrades/IDEs_and_project_manager
s/hew/index.html 
 



8-44 

8.5.5 Installing High-performance Embedded Workshop (2) 

 Question: 

When I start the High-performance Embedded Workshop and try to create a new project workspace, 
I cannot, since nothing is displayed in the project type field. Why is this? 

 Answer: 

For the version of the High-performance Embedded Workshop environment that comes with 
M3T-NC30WA, be sure to use the M3T-NC30WA installer. Also, when installing M3T-NC30WA for 
the High-performance Embedded Workshop on a machine on which the High-performance 
Embedded Workshop environment is already installed, be sure to perform installation by overwriting 
the existing the High-performance Embedded Workshop environment. 

If this does not solve the problem, perform the following for toolchain registration: 

(1) Start the High-performance Embedded Workshop. 

(2) When the [Welcome!] dialog box appears, click the [Cancel] button. 

(3) In the High-performance Embedded Workshop menu, choose [Tools], and then click 
[Administration]. The [Tool Administration] dialog box appears. 

(4) In the [Tool Administration] dialog box, click the [Registration] button. The [Choose HEW 
Registration File] dialog box appears. 

(5) In the [Choose HEW Registration File] dialog box, for the file location, navigate to the 
M3T-NC30WA installation directory (which is "¥MTOOL" by default). 

(6) Select "nc30wa.hrf", and click the [Select] button. 

(7) When you return to the [Tool Administration] dialog box, click the [OK] button. 

 

 



8-45 

8.5.6 Cancelling a Build 

 Question: 

How can I cancel a build when a compiler error occurs while the build is being performed? 

 Answer: 

With the default High-performance Embedded Workshop settings, even when an error occurs during 
a build, the build is not cancelled, and processing is performed through to linking. You can perform 
the following settings to cancel a build whenever an error occurs. 

(1) From the [Tools] menu, click [Options]. The [Options] dialog box is displayed. 

(2) In the [Options] dialog box, click the [Build] tab. The settings for build processing are displayed. 

(3) Select [Stop build if the number of errors is exceeded:]. 

(You can specify this number of errors in the adjacent test box.) 

(4) Click the [OK] button to close the dialog box. 

To cancel a build when a warning occurs, select [Stop build processing if the number of warnings is 
exceeded:]. Just as with errors, you can specify this number of warnings in the adjacent test box. 



8-46 

8.5.7 Selecting a Build Target 

 Question: 

When I perform a build with the High-performance Embedded Workshop3, the file built is not the 
one specified (the file selected in the tree of the [Project] tab, in the workspace window), but the one 
open in the editor. Why is this? 

 Answer: 

When the file open in the editor has focus (you can see the cursor), it becomes the build target. This is 
because source files are often built after being edited. If the editor does not have focus, the file 
selected in the tree of the [Project] tab, in the workspace window, is the build target. 



8-47 

8.5.8 Build Configuration 

 Question: 

Why is it that even if a build error occurs when [Release] is selected for the build configuration, 
compile can be performed properly when [Debug] is selected? 

 Answer: 

This is because the options set for [Debug] and [Release] are different. 

About the utility of build configurations: 

When a project is created in the High-performance Embedded Workshop, two build 
configurations are created: [Release] and [Debug]. Different option patterns can be set for each 
configuration, so that these option patterns can be easily switched by switching the build 
configuration. 

 Note that when the High-performance Embedded Workshop first creates these build 
configurations, the option patterns of each are identical. 

For the above reasons, when option patterns are changed for one of the configurations in the 
High-performance Embedded Workshop, the changes are not automatically applied to the other 
configuration. 



8-48 

8.5.9 Outputting Debugging Information 

 Question: 

I am using NC8C Version 5.30 Release 1. Is debugging information output by default when a project 
is created? 

 Answer: 

Debugging information is not set to be output by default when a work space is created. 

To output debugging information, set the corresponding options as follows: 

(1) From the [Options] menu, click [Renesas R8C Standard Toolchain]. 

(2) The [Renesas R8C Standard Toolchain] dialog box appears. 

(3) Click the [C] tab. 

(4) From [Category], select [Object]. 

(5) From the [Debug options] list, select [-g]. 

(6) Click the [OK] button. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8-49 

8.6 SBDATA Declaration Utility 

8.6.1 SBDATA Declaration Utility 

 Question: 

Why are some variables commented out when I use the SBDATA declaration utility (utlxx) to 
generate "sbdata.h"? 

 Answer: 

Variables already declared as SBDATA in a program are mapped first to the SBDATA area. The 
SBDATA declaration utility maps the remaining parts to variables. As such, variables not mapped to 
the SBDATA area are output as comments. There are two kinds of comments output: 

(1) Comments for variables already declared in #pragma SBDATA. 

The @ character is appended to the end of the comment. 

//#pragma  SBDATA  ***********           /* size=(   1) / ref=[    22] @ 
*/ 

 

(2) Comments for variables that could have been but were not mapped to SBDATA. 

//#pragma  SBDATA  ***********           /* size=(   1) / ref=[    22] */ 



8-50 

MEMO 



Appendix-1 

 Appendix 

Appendix A. Added Features 

A.1 Features Added between Ver 1.00 Release 1 and Ver 2.00 Release 1 

(1) SB308: SBDATA declaration utility 

This utility analyzes information on variable usage, and outputs the SBDATA declarations 
(#pragma SBDATA) in order of access frequency. 

You can reduce code size by including the output header file, and then recompiling. 

(2) SP308: Special page declaration utility 

This utility analyzes information on function calls, and outputs special page declarations (#pragma 
SPECIAL) in order of number of times functions are called. 

You can reduce code size by including the output header file, and then recompiling. 

(3) Levels for optimization options 

• Optimization options have been divided into five levels, "-O1" through "-O5", to facilitate 
specification. 

-O1 Only performs optimization that does not affect debugging information (line 
information). 

-O2 With Version 2.00 Release 2, this is the same as -O1. 

-O3 Performs optimization, including that which affects debugging information. 
Specifying -O is has the same effect as specifying -O3. 

-O4 In addition to the optimizations performed with -O3, performs optimization whereby 
references to the const external variable are replaced with a constant. 

-O5 In addition to the optimizations performed with -O4, performs common 
sub-expression optimization whereby variable aliases (such as indirect references) 
are disregarded. 

Note that when the same variable is used, if operation involves both direct and 
pointer indirect references, or multiple pointers are used indirectly, code may be 
created that behaves unexpectedly. As such, use this option only after taking 
generated code into careful consideration. 

 

• -Ono_logical_or_combine (-ONLOC) 

Prevents optimization in which consecutive logical ORs are combined. This takes effect when the 
level specified is "-O3" or greater. 

• -Ocompare_byte_to_word (-OCBTW) 

Performs comparison by word for sequential bytes in sequential memory. 

This option takes effect regardless of the other options specified. 



Appendix-2 

(4)Warning options 

• -Wlarge_to_small (-WLTS) 

Issues a warning for implicit type conversions from large sizes to small sizes. 

This option does not take effect unless explicitly specified, even when the "-Wall" option is 
specified. 

• -Wuninitialize_variable (-WUV) 

Issues a warning when an uninitialized auto variable is used. 

When the "-Wall" option is specified, this option takes effect automatically, even when not 
specified. 

Note that in a user application, when initialization is performed by branching by means of such 
conditions as "if" or "for", the compiler will evaluate this as initialization not performed, and a 
warning will be output. 

Example: 
main() 
{ 
 int i; 
 int val; 
 for(i=0;i<2;i++){ 
  f(); 
  val = 1; //Initialization always performed here 
 } 
 ff( val ); 
} 

 

(5)Options to change output code 

• -finfo 

Outputs information files for SB308 and SP308. 

• -fuse_CLIP (-fUC) 

Generates code, using CLIP instructions. 

• -fuse_MAX (-fUM) 

Generates code, using MIN and MAX instructions. 

(6)Variable name expansion processing for the asm function 

Support has been added for variable name expansion, using $@. When $@ is specified, the 
compiler performs output after evaluating whether the corresponding variable is an auto variable, 
register variable, or external variable. 

Example: asm("    mov.w   #10H,$@",I); 

(7)AS308 functionality 

Operations that contain strings can now be specified in assembler directions and mnemonic 
operands. 

(8)XRF308 functionality 

The maximum number of files that xrf308 can open concurrently has been changed to 600. 



Appendix-3 

A.2  Features Added between Ver 2.00 Release 1 and Ver 2.00 Release 2 
None. 



Appendix-4 

A.3  Features Added between Ver 2.00 Release 2 and Ver 3.00 Release 1 

(1) aopt308: assembler optimizer 

The assembler optimizer aopt308 has been added, allowing conditional branches using the adjnz 
command to be optimized. Note that aopt308 is run automatically when compilation is performed 
with compile driver nc308, with one of "-O", -"O3", "-O4", "-O5", "-OR", or "-OS" options 
specified. 

(2) utl308: SBDATA declaration and special page declaration utility 

The SBDATA declaration utility and special page function declaration utility have been merged into 
utl308, and the existing sb308 and sp308 utilities have been discontinued. 

You can reduce code size by including the output header file of this utility. 

(3) STK viewer (for W95J and Solaris versions only) 

A GUI has been created for the stack usage calculation utility, to increase usability and viewing. 

(4) Map viewer (W95J version only) 

A utility for viewing map information has been added, allowing map information to be viewed 
more easily. 

(5) Support for the integrated development environment TM Version 3.00 (W95J version only) 

Support has been added for integrated development environment TM Version 3.00. 

Note that TM version 2.01 and earlier is no longer supported. 

(6) Merging of stack information and utility information 

Until now, stack information (.stk) and information for the SBDATA declaration and special page 
declaration utility (.utl) have been output individually for each source file. These have been merged 
with inspector information, so that separate data files no longer need to be created. 

Note that inspector information is used by integrated development environment TM Version 3.00, 
and is stored in relocatable files (.r30) and absolute module files (.x30). 

(7) NC308 functionality 

(a) Optimization options 

• The -"Oloop_unroll[=maximum-number-of-loops](-OLU)" command option 

Improves execution speed by expanding, during compilation, "for" loops for which the number of 
loops is clear. 

If the maximum number of loops is specified, loops that loop within the specified number of times 
will be expanded. 

If the maximum number of loops is omitted, "for" loops that loop five or fewer times will be 
expanded. 

(b) Strengthened warning functionality and suppression options 

• Warnings for missing includes in the header files of standard library functions 

When the "-Wno_prototype" or "-Wall" option is specified, the standard library functions are used. 
If header files needed for these functions are not included, a warning message will be output. 

• The "-Wno_warning_stdlib(-WNWS)" command option 

Suppresses the warning messages output when the above header files are not included. 

This option takes effect when the "-Wnon_prototype (-WNP) or "-Wall" option is specified. 



Appendix-5 

(c) Function start alignment by default, and corresponding suppression option 
Even alignment for instruction positions of function starts can now be performed by default. 

With this, the "-fno_align" option has been added to suppress even alignment for instruction 
positions of function starts, and the "-falign" option to perform even alignment has been 
discontinued. 

(d) Changes to utility information output options 

• Changes in functionality for the "-finfo" command option 

As stack information and utility information have been merged, inspector information (including 
stack information and utility information) can now be output using the "-finfo" option. 

The previous "-fshow_stack_usage(-fSSU)" option has been discontinued. 

(e) CLIP, MAX, and MIN instructions used by default 

The "-fuse_CLIP(-fUC)" and "-fuse_MAX(-fUM)" options to use the CLIP, MAX and MIN 
instructions have been discontinued, so that these instructions can be used without specifying 
anything. 

(8) AS308 functionality 

(a) Functionality to create inspector information 

• The "-finfo" command option 

The "-finfo" command option has been added, to create inspector information. 

• Directives 

The following directives have been added. 

• .INSF: Shows function (subroutine) start information for the inspector information. 

• .EINSF: Shows function (subroutine) end information for the inspector information. 

• .CALL: Shows function (subroutine) call destination information for the inspector information. 

• .STK: Shows stack information for the inspector information. 

(b) Branch optimization implementation 
Branch optimization can be performed using the adjnz and sbjnz instructions. Note these are 
equivalent to conditional branch instructions for optimal choice rules. 

(9) LMC308 functionality 

• The "-A" command option 

The "-A" command option was added, to specify the address range of machine-language data 
output to the created file. 

• The "-F" command option 

The "-F" command option was added, to output optional data for addresses not registered in the 
specified absolute module file. 

• Extension functionality for the output file name specification option 

The output file name specification option "-O" can now be used to specify the extension of the 
output file name. 

• Changes to functionality for generation conditions of original Mitsubishi HEX format files 



Appendix-6 

Previously, when the "-H" command option was specified, files were created in the original 
Mitsubishi HEX format for all sections registered in the specified absolute module file, based on 
the maximum address value of the set data. With this version, this only happens when addresses for 
sections that have the CODE or ROMDATA attribute exceed 1MB. Note that when an original 
Mitsubishi HEX format file is created, the "Original HEX format for mitsubishi microcomputers is 
generated" warning message is output. 

• Changes to functionality when no ROM data exists 

Previously, when sections in the specified absolute module file that had the CODE or ROMDATA 
attribute contained no data, a machine-language file containing no data was created. With this 
version, an error will occur. 

• Execution path display 

The execution status of lmc308 is now displayed as a path, the same as with the assembler. 



Appendix-7 

A.4  Features Added between Ver 3.00 Release 1 and Ver 3.10 Release 1 

(1) NC308 functionality 

(a) Strengthened optimization 
Optimization for conditional branching, bit operations, and register variables in the compiler 
architecture has been strengthened. 

Optimization for the assembler has also been improved, including that for combining like logical 
operations for sequential areas and registers, and for machine-fixed instructions such as btsts. 

(b) Strengthened warnings and additional options 
The "-Wno_used_argument(-WNUA)" command option has been added. 

When this option is specified, warnings are issued for unused parameters during function 
definition. 

This function does not take effect, even when "-Wall" is specified, and needs to be specified 
separately. 

(c) Options for assembling list files 
The "-dsource_in_list(-dSL)" command option has been added. 

When this option is specified, whenever a relocatable file is created, an assembling list file is also 
created, and output as commented C source lines. 

Note that this has no effect when the "-P", "-E", or "-S" option is specified, as assembling is not 
performed. 

(d) Changes to "-dsource(-dS)" option functionality 
When this option is specified and commented C source lines are output to the generated assembly 
source, unnecessary relocatable files (.r30) will no longer be remain undeleted. 

(2) AS308 functionality 

When absolute addressing "base:19" is specified for the "BTST" operand of a bit operation 
instruction, code is now generated in S format. 

(3) Strengthened functionality for utl308: SBDATA declaration and special page function 
declaration utility 

• The "-sb308" and "-sp308" command options can now be specified simultaneously. 

SBDATA processing and special page processing can now be performed concurrently. 

• The "-fsection" command option has been added. 

When this option is specified, variables and functions used in #pragma SECTION to change 
location sections are also processed. 

• Processing for the "-o" command option has changed, and "-fover_write(-fOW)" has been 
added. 

When an output file is specified with the "-o" option, if the file already exists, the results will 
be output to the standard output, and the file will not be overwritten. 

When the "-fover_write(-fOW)" option is specified simultaneously, if an existing file is 
specified for "-o", the file will be force overwritten. 

 



Appendix-8 

A.5  Features Added between Ver 3.10 Release 1 and Ver 3.10 Release 2 

(1) NC308 functionality 

(a) Increased maximum nesting for #include 
The maximum number of nested files that can be loaded using the #include directive has been 
increased from 8 to 40. 

(b) Changes in how comments are processed 
Comment processing has been changed to match that used for common C++ processing. 

In previous versions, portions between // and line feed codes were processed after portions 
enclosed between /* and */ were processed. In this version, comment processing takes place from 
the comment delineator character first. 

As a result, keep in mind that comment processing has changed as shown in the following example. 

 

 
 i = 4 //* comment */ 
  +2;  
 

 

In previous versions, everything between /* and */ was treated as a comment, leaving i = 4 / +2;. 

In this version, everything between // and the end of the line is treated as a comment, leaving i = 4 
+2;. 

(c) Support for lowercase #pragma extension function names 
The designated extension function words following the #pragma directive (such as ADDRESS, 
INTERRUPT, SBDATA, and ASM) can now be specified using lowercase letters. The functionality 
does not change regardless of the case used. 

(d) Changes to #pragma ASM, #pragma ENDASM 
In previous versions, if non-paired quote characters (' or ") were specified between #pragma ASM 
and #pragma ENDASM, an error would occur during token analysis. With this version, this is 
allowed. 

 

 
#pragma ASM 
 
 nop ; Insert "NOP" // The double quote characters are paired, and no problem exists. 
 
 nop ; Don't care // Only one quote character exists. 
   // This would lead to an error in previous versions,  
   // but is now allowed. 
 
#pragma ENDASM 
 

 

(e) Strengthened warning functionality 
In previous versions, when the "-Wno_used_argument(-WNUA)" command option was specified, 
warnings would be issued for unused stack passing arguments. With this version, warnings are also 
issued for unused register passing arguments. 

 



Appendix-9 

A.6  Features Added between Ver 3.10 Release 2 and Ver 3.10 Release 3 
None. 

 



Appendix-10 

A.7  Features Added between Ver 3.10 Release 3 and Ver 5.00 Release 1 

(1) Linux version 

A Linux (supporting Japanese Turbolinux 7 workstation) version has been added. 

(2) NC308 functionality 

(a) Support for the "long long" type, "_Bool" type, and "restrict" modifier 
Support has been added for the newly created types ("long long" type, and "_Bool" type) and 
"restrict" modifier, for ISO/IEC 9899:1999 (ANSI C99). 

(b) Extension function #pragma BITADDRESS 
The extension function #pragma BITADDRESS has been added, allowing "_Bool" type external 
variables to be allocated to 1 bit of a specified absolute address. 

(c) Extension function #pragma SB16DATA 
The extension function #pragma SB16DATA has been added, allowing external variables to be 
accessed using dsp16[SB] addressing. 

(d) Extension function #pragma DMAC 
The extension function #pragma DMAC has been added, allowing external variables to be allocated 
to the DMAC register, so that C can be used to access the DMAC register. This functionality 
supports DMAC channels 0 and 1. 

(e) Strengthened optimization functionality 
Optimization (especially that improving execution speed) including the following has been 
strengthened: 

• Inline function functionality 

• Constant transmission optimization 

• Optimization of analysis for branching, such as using "if" statements 

• Optimizations such as those for arithmetic calculations 

(f) Changes to how extension function #pragma SECTION is processed 
Processing for #pragma SECTION has been changed to allow the "data" and "rom" section names 
within a given source file to be changed multiple times. 

(g) Changes to predefined macros for the M32C/80 series 
When the "-M82" code generation option for the M32C/80 series is used, "M32C80", and not 
"M16C80", is now defined as the predefined macro. 

(h) Faster interrupt processing functions 
Register save and restore processing for interrupt processing functions has been made faster. 

(i) asm function extension 
Up to two $$ and $@ can now be used within the asm function. 

(j) Binary support for integer constants 
Binary numbers can now be specified for integer constants. Integer constants starting with the "0b" 
prefix are treated as binary numbers. For example, you can specify "0b00010010" in binary to 
represent the hexadecimal number "0x12". 



Appendix-11 

(3) Inline expansion macro for standard library functions 

An inline expansion macro for the strcpy, strcmp, memcpy, and memset standard library functions 
has been added to the standard header "string.h". 

(4) Strengthened AS308 functionality 

(a) Optimization for address register relative addressing 
When the address register relative value 0 is used for standard instructions and bit instructions, 
address register indirect addressing is selected. 

 

 
 mov.w #1234h,0[A0] → mov.w #1234h,[A0] 
 bclr 1.0[A0] → bclr 1,[A0] 
 

 

(b) The .SBSYM16 directive 
When symbols defined with this directive are referenced, dsp16[SB] addressing is selected. 

 

 
 .glb sym 
 .sbsym16 sym 
 abs.b sym       → dsp:16[SB] is selcted 
 

 

(5) Strengthened LN308 functionality 

(a) Changes to specification rules for command files 
The number of characters that can be specified on one line has been increased from 255 to 2,048. 

(6) Strengthened map viewer functionality 

The following functionality has been added to the map viewer. 

• Map information printing 

• Scrolling in the left window 

• Displayed expansion/reduction of the memory size image 

 



Appendix-12 

A.8  Features Added between Ver 5.00 Release 1 and Ver 5.10 Release 1 

(1) NC308 functionality 

(a) The "-fdouble_32[-fD32]" command option 
Specifies that double types be handled as 32-bit data lengths, the same as float types. 

Note: 
When using this option, be sure to indicate the function prototype. If no prototype declaration 
exists, code may not be generated properly. 

(b) The "-Wno_used_static_function[-WNUSF]" command option 
When the "-Ostatic_to_inline[-OSTI]" option is specified, the following warning message will be 
displayed when the static function is expanded inline, or is not referenced from anywhere: 

 

[Warning(ccom):xxx.c,line xx] Code generation for static function 
(function-name) can be suppressed by using -ferase_static_function(-fESF) 
option. 

(c) The "-ferase_static_function=name-of-the-static-function[-fESF=name-of-the-static-function]" 
command option 

Prevents code from being generated for the specified static function. 

Note: 
Specify this option for static functions detected by the 
"-Wno_used_static_function[-WNUSF]" command option. 

(d) Strengthened "-Oconst" command option 
Replaces references to array data initialized by a constant with references to the constant. 

(e) Strengthened processing for sum calculations 
The rmpa instruction is now generated for sum calculation processing within "for" statements. 

Program example: 
signed  char ch1[10]; 
signed  char ch2[10]; 
int  ih1[10] ; 
int  ih2[10] ; 
 
#define  LOOP_MAX  9 
 
signed  char *pc1,*pc2; 
int  *pi1,*pi2; 
 
int i; 
long l; 
 
void func_c1(void) 
{ 
  int j; 
 
  i = 0; 
  for( j=0; j<LOOP_MAX; j++ ){ 
   i = i + (int)*pc1 * (int)*pc2; 
   pc1++; 
   pc2++; 
  } 
} 
 
void func_c2(void) 



Appendix-13 

{ 
  int j; 
 
  i = 0; 
  for( j=0; j<LOOP_MAX; j++ ){ 
   i = i + (int)ch1[j] * (int)ch2[j]; 
  } 
} 

Generated code example: 
_func_c1: 
  pushm      R1,R2,R3,A0,A1 
  mov.w      #0000H,_i:16 
  mov.w      _i:16,R0 
  mov.l      _pc1:16,A0 
  mov.l      _pc2:16,A1 
  mov.w      #0009H,R3 
  rmpa.b 
  mov.w      R0,_i:16 
  add.l      #00000009H,_pc1:16 
  add.l      #00000009H,_pc2:16 
  popm      R1,R2,R3,A0,A1 
  rts 
 
_func_c2: 
  pushm      R1,R2,R3,A0,A1 
  mov.w      #0000H,_i:16 
  mov.w      _i:16,R0 
  mov.w         #(_ch1&0FFFFH),A0 
  mov.w         #(_ch2&0FFFFH),A1 
  mov.w         #0009H,R3 
  rmpa.b 
  mov.w      R0,_i:16 
  popm      R1,R2,R3,A0,A1 
  rts 

Notes: 
 One of the "-O[3-to-5]", "-OS", or "-OR" optimization options needs to be specified. 
 The rmpa instruction may not be generated, depending on the processing for the sum 

calculation in the "for" statement. 
 

(2) AS308 functionality 

(a) AS308 options "-PATCH_TA" and "-PATCH_TAn" 
Generates code to save precautions for timer functionality, for controlling three-phase motors. 

(b) LN308 option "-U" 
Outputs a warning message output for unused functions. 

(c) LMC308 option "-F" 
Ranges can now be specified for processing to embed arbitrary data in free areas. 

 



Appendix-14 

A.9  Features Added between Ver 5.10 Release 1 and Ver 5.20 Release 1 

(1) NC308 functionality 

(a) High-performance Embedded Workshop 
The High-performance Embedded Workshop, an integrated development environment that 
combines and batch manages various tools, including editors and debuggers, has been added. 

(b) The "-fno_switch_table [-fNST]" command option 
Generates branching code that always performs comparisons for "switch" statements 

Note: 
Specify this option to prevent code from being created that uses table jumps for "switch" 
statements. 

(c) The "-fswitch_other_section [-fSOS]" command option 
Specifies table codes for "switch" statements in a section other than the program section. 

Note: 
This option does not take effect when the "-fno_switch_table [-fNST]" option is specified. 

(d) The "-fmake_vector_table [-fMVT]" command option 
Automatically generates interrupt vector tables. 

(e) The "-fmake_special_table [-fMST]" command option 
Automatically generates special page tables. 

(f) The "-Oforward_function_to_inline [-OFFTI]" command option 
Performs inline expansion for all inline functions. 

(g) The "-Ofloat_to_inline [-OFTI]" command option 
Performs inline expansion of floating-point runtime libraries, to increase speed for floating-point 
calculation processing. 

Note: 
This option takes effect when specified simultaneously with the "-M82" compile option. 

(h) The "-Oglb_jmp [-OGJ]" command option 
Selects the optimum branching instruction, based on the branching distance during linking. 

(i) The "-Wno_used_function [-WNUF]" command option 
Outputs a warning when an unused formula is detected. 

(j) The "-Wstop_at_link [-WSAL]" command option 
Prevents an absolute module file from being created when a warning occurs during linking. 

(k) The "-Wundefined_macro [-WUM]" command option 
Outputs a warning when an undefined macro is used within an "#if" statement. 

(l) Options for the extension function #pragma INTHANDLER(#pragma HANDLER) 
Multiple interrupts are now allowed immediately after an interrupt handler is entered. 

Note: 
This functionality takes effect when the "/E" option is specified in #pragma INTHANDLER 
(#pragma HANDLER). 



Appendix-15 

(2) AS308 functionality 

(a) The "–fMVT" command option 
Automatically generates variable vector tables. 

(b) The "–fMST" command option 
Automatically generates special page tables. 

(c) The "–JOPT" command option 
Optimizes branching instructions that reference global labels. 

(d) The .ID directive 
Sets the ID code for the ID code check function. 

(e) The .PROTECT directive 
Sets a value for the control address for ROM code protection. 

(f) The .RVECTOR directive 
Sets the software interrupt number and software interrupt name. 

(g) The .SVECTOR directive 
Sets the special page number and special page name. 

(3) LN308 functionality 

(a) The "–fMVT" command option 
Automatically generates variable vector tables. 

(b) The "–fMST" command option 
Automatically generates special page tables. 

(c) The "–VECT" command option 
Sets addresses for free areas when automatic generation is performed for variable vector tables. 

(d) The "–JOPT" command option 
Optimizes branching instructions that reference global labels. 

(e) The "–W" command option 
Prevents an absolute module file from being created when a warning occurs. 

(f) Removal of precautions for the "–L" command option 
The following precautions from the previous version have been removed: 

When multiple library files are specified, the linker references them in the order they are specified. 
As a result, an undefined symbol error will occur when the following conditions are satisfied: 

• The relocatable file (sample.r30) references a global symbol registered in the library file 
(A.LIB). 

• The relocatable module in the library file (A.LIB) linked in (1) references a global symbol 
registered in another library file (B.LIB). 

• In the "-L" option, the library file (B.LIB) from (2) is specified before the library file (A.LIB) 
from (1), such as in the following example: 



Appendix-16 

>ln308 sample.r30 -L B.LIB A.LIB 

(4) LMC308 functionality 

(a) The "–protectx" command option 
Sets a value for the control address for ROM code protection. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C Compiler for M16C Family Application Notes 

Publication Date: Jun. 16, 2005 Rev.2.00 

Published by: 
Sales Strategic Planning Div. 
Renesas Technology Corp. 

Edited by: Microcomputer Tool Development Department 
Renesas Solutions Corp. 

© 2005. Renesas Technology Corp. and Renesas Solutions Corp., All rights reserved. Printed in Japan. 

 
 
 



 

 

 

C Compiler for M16C Family
Application Notes


	Preface
	Contents
	Section 1. Overview
	1.1 Summary
	1.1.1 Specification Summary

	1.2 Features
	1.3 Method of Installation
	1.4 Method of Execution
	1.4.1 Starting the Compiler
	1.4.2 Starting the Embedded Workshop

	1.5 Procedure for Program Development

	Section 2. Procedure for Creating a Program
	2.1 Creating a Project
	2.2 Start-up Programs
	2.2.1 Purpose of Startup Programs
	2.2.2 Setting Up a Startup Program


	Section 3. Compiler
	3.1 Interrupt Functions
	3.1.1 Coding Interrupt Processing Functions
	3.1.2 Coding Fast Interrupt Processing Functions
	3.1.3 Coding Functions for Software Interrupt (INT Instruction) Processing
	3.1.4 Registering Interrupt Processing Functions
	3.1.5 Coding Example of Interrupt Processing Functions

	3.2 Assembler Macro
	3.2.1 Assembly Language Instructions that can Be Specified Using AssemblerMacro Functions
	3.2.2Decimal Addition Using the Assembler Macro Function "dadd_b"
	3.2.3 Transferring Strings Using the Assembler Macro Function "smovf_b"
	3.2.4 Sum-of-Products Operation Using the Assembler Macro Function "rmpa_w"
	3.2.5 #pragma __ASMMACRO

	3.3 Pragma Functions and Options for Reducing ROM Area
	3.3.1#pragma SBDATA
	3.3.2 #pragma SB16DATA
	3.3.3 #pragma BIT
	3.3.4 #pragma SPECIAL
	3.3.5 –fjsrw
	3.3.6–OR
	3.3.7–fno_align
	3.3.8 –Wno_used_function

	3.4 Pragma Function and Options for Speeding UP Processing
	3.4.1#pragma STRUCT
	3.4.2 -Ostack_frame_align
	3.4.3 -OS
	3.4.4 -Oloop_unroll[=count]
	3.4.5 -Ofloat_to_inline
	3.4.6 –Ostatic_to_inline

	3.5 Pragma Functions and Options for Reducing ROM Area andSpeeding Up Processing
	3.5.1-O[1-5]
	3.5.2-Osp_adjust
	3.5.3 -fuse_DIV
	3.5.4 -Wno_used_argument
	3.5.5 -fsmall_array
	3.5.6 -fdouble_32

	3.6 Other Pragma Functions and Options
	3.6.1Other Pragma Functions
	3.6.2Other Options

	3.7Sections
	3.7.1Sections Managed by NC308

	3.8 Issues Related to Cross-Software
	3.8.1 Issues Related to Assembly Language Programs

	3.9 long long Type
	3.10 "near/far" Type
	3.10.1 Near and Far Areas
	3.10.2 Defaults of the "near" and "far" Attributes
	3.10.3 "near" and "far" Specification for Functions
	3.10.4 "near" and "far" Specification for Variables
	3.10.5 "near" and "far" Specification for Pointers
	3.10.6 Difference in Pointer's "near/far" Specification between NC308 and NC30
	3.10.7 Assigning Variable Address in the Far Area to the "near" Pointer

	3.11 Inline Expansion
	3.11.1Overview of the Inline Storage Class
	3.11.2Format of an Inline Storage Class Declaration
	3.11.3 Rules for the Inline Storage Class


	Section 4. Using the High-performance EmbeddedWorkshop
	4.1 Specifying Options in the High-performance Embedded Workshop
	4.1.1 C Compiler Options
	4.1.2 Assembler Options
	4.1.3 Linkage Editor Options
	4.1.4 Librarian Options
	4.1.5 Load Module Converter Options
	4.1.6 Configuration Options
	4.1.7 CPU Options

	4.2 Builds
	4.2.1 Makefile Output
	4.2.2 Makefile Input
	4.2.3 Creating Custom Project Types
	4.2.4 Multi-CPU Feature
	4.2.5 Networking Feature


	Section 5. Efficient Programming Techniques
	5.1 Register Passing for Arguments
	5.2 Using Register Variables
	5.3 Using M16C-specific Instructions
	5.4 Using the "Carry" Flag for Bit Operation Branching
	5.5 Moving Determinate Expressions Within a Loop to Outside of theLoop
	5.6 SBDATA Declaration and SPECIAL Page Function DeclarationUtility
	5.7 Using "switch" Instead of "else if"
	5.8 Comparison Operators for Loop Counters
	5.9 restrict
	5.10 Using _Bool
	5.11 Explicitly Initializing auto Variables
	5.12 Initializing Arrays
	5.13 Increments / Decrements
	5.14 "Switch" Statements
	5.15 Immediate Floating-points
	5.16 Zero Clearing External Variables
	5.17 Organizing Startup
	5.18 Using Temporary Values within Loops
	5.19 Using 32-bit Mathematical Functions
	5.20 Using unsigned Whenever Possible
	5.21 Array Index Types
	5.22 Using Prototype Declarations
	5.23 Using the char Type for Functions that Return only char TypeValues
	5.24 Commenting Out Clear Processing for bss Areas
	5.25 Reducing Generated Code

	Section 6. Using the Simulator Debugger
	6.1 Using the Virtual Interrupt Function
	6.1.1 Inserting a Virtual Interrupt by Button Click
	6.1.2 Inserting a Virtual Interrupt at a Regular Interval
	6.1.3 Inserting a Virtual Interrupt at a Specified Cycle
	6.1.4 Inserting a Virtual Interrupt When an Instruction at a Specified Address IsExecuted

	6.2 Using the Virtual Port Input/Output Function
	6.2.1 Entering Data by Button Click
	6.2.2 Entering Data from a Virtual Port When a Specified Address Is Read
	6.2.3 Entering Data from a Virtual Port at a Specified Cycle
	6.2.4 Entering Data from a Virtual Port When a Virtual Interrupt Occurs
	6.2.5 Checking Data Output to a Virtual Output Port

	6.3 Using a Virtual LED or Label to Check the Memory Contents
	6.4 Using printf for Debugging
	6.5 Using I/O Scripts

	Section 7. MISRA C
	7.1 MISRA C
	7.1.1 What Is MISRA C?
	7.1.2 Rule Examples
	7.1.3 Compliance Matrix
	7.1.4 Rule Violations
	7.1.5 MISRA C Compliance

	7.2 SQMlint
	7.2.1 What Is SQMlint?
	7.2.2 Using SQMlint
	7.2.3 Viewing Test Results
	7.2.4 Development Procedures


	Section 8. Frequently Asked Questions
	8.1 C Compiler (M3T-NC308WA)
	8.1.1 Bit Fields
	8.1.2 Memory Management Functions
	8.1.3 -ONBSD Option
	8.1.4 Priority of Optimization Options
	8.1.5 Adding Functions to the Library
	8.1.6 Placing const Declarations in the ROM Section
	8.1.7 Passing Parameters via Registers
	8.1.8 How Function Parameters are Passed
	8.1.9 Prototype Declarations
	8.1.10 Member Placement in a Structured Bit Field
	8.1.11 Increment and Decrement Operators
	8.1.12 Placing External Variables
	8.1.13 Placing an Array in the far Area
	8.1.14 Placing a Function at a Fixed Address
	8.1.15 Specifying an Absolute Address Using #pragma ADDRESS
	8.1.16 Using #define to Define a String
	8.1.17 Types of Bit Field Members
	8.1.18 Duplicate Variable Definitions
	8.1.19 Prototype Declarations for a Function
	8.1.20 External References for Functions Without an extern Declaration
	8.1.21 Code Deletion During Optimization
	8.1.22 Consolidating Bit Access
	8.1.23 Placing a Library Function at a ROM Address
	8.1.24 Processing for Negative Integer Calculations
	8.1.25 int Type Sizes
	8.1.26 Controlling the enter Instruction
	8.1.27 Performance for the Floating-point Library

	8.2 Linker
	8.2.1 "-LOC" Option for ln308 and ln30
	8.2.2 Warnings During Linking
	8.2.3 Changing a Start Address

	8.3 Stk Viewer
	8.3.1 Stk Viewer Stack Size

	8.4 SQMLint
	8.4.1 Selecting Test Rules
	8.4.2 Outputting Report Files
	8.4.3 Report Messages (1)
	8.4.4 Report Messages (2)

	8.5 High-performance Embedded Workshop
	8.5.1 Link Order for Files
	8.5.2 Link Order for Relocatable Files
	8.5.3 Generating Motorola S Format Files
	8.5.4 Installing High-performance Embedded Workshop (1)
	8.5.5 Installing High-performance Embedded Workshop (2)
	8.5.6 Cancelling a Build
	8.5.7 Selecting a Build Target
	8.5.8 Build Configuration
	8.5.9 Outputting Debugging Information

	8.6 SBDATA Declaration Utility
	8.6.1 SBDATA Declaration Utility


	Appendix
	Appendix A. Added Features
	A.1 Features Added between Ver 1.00 Release 1 and Ver 2.00 Release 1
	A.2 Features Added between Ver 2.00 Release 1 and Ver 2.00 Release 2
	A.3 Features Added between Ver 2.00 Release 2 and Ver 3.00 Release 1
	A.4 Features Added between Ver 3.00 Release 1 and Ver 3.10 Release 1
	A.5 Features Added between Ver 3.10 Release 1 and Ver 3.10 Release 2
	A.6 Features Added between Ver 3.10 Release 2 and Ver 3.10 Release 3
	A.7 Features Added between Ver 3.10 Release 3 and Ver 5.00 Release 1
	A.8 Features Added between Ver 5.00 Release 1 and Ver 5.10 Release 1
	A.9 Features Added between Ver 5.10 Release 1 and Ver 5.20 Release 1





